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Abstract

In this thesis the first principle calculation of Aluminum surface(Al100) is investi-

gated with density functional theory (DFT) using Quantum Espresso package. Our

study is based on Density Functional Theory (DFT) with the Perdew-Burke-Ernzerhof

(PBE) exchange-correlation functional, Vanderbilt (ultra soft) pseudopotentials and

the plane wave basis set implemented in the Quantum-ESPRESSO package. The

calculation of the total minimum energy and the total minimum force ofAl(100) is

calculated as a function of cutoff energy and K-points sampling. The total minimum

values are selected at the points of convergence. These convergence values are then

used as inputs for the calculation of equilibrium lattice constant, energy band gap and

density of state of Al(100). However, this trend can not be predicted from increas-

ing the k-points sampling. Moreover, the equilibrium lattice constant is calculated

using results obtained from energy convergence test (i.e., 50 Ry and 17× 17× 1).The

calculated values of the equilibrium lattice constant are a = 5.420 bohr and c= 6.36

bohr. They are closer to the experimental value of a = 5.22 bohr and c= 6.48 bohr.

Finally, discussing band structure and density of state of two dimensional Al(100),

the electrical property of two dimensionalAl(100) is determined based on energy band

gap.

Keywords: Aluminum surface,density functional theory,electronic structure,total

energy
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Chapter 1

Background of the Study

1.1 Introduction

Aluminum is the third most abundant element in the earth’s crust after oxygen and

silicon [1]. It has a density of 2.70g/cm3. Therefore, a piece of aluminum of volume

10.0cm3 has a mass of 27.0 g [2]. By mass Aluminum makes up about 8.3% of the

earth crust. It is never found free in nature and found in most rocks, particularly

ingenues rocks as aluminum silicate minerals. It is a light metal that is easy to

melt, odorless, tasteless, nontoxic, non-magnetic materials and has a high electrical

conductivity.

Aluminum is remarkable for it is low density and its ability to resist corrosion. The

Density of aluminum is 2.7g/cm3 about 1/3 that of steel much lower than other

commonly encountered metals. It’s low density compared to the most other metals

arise from the fact that its nuclear are much lighter. It is not as strong or stiff as steel,

but the low density make up for this in the aerospace industry and for many other

applications where light weight is crucial. Pure aluminum is quite soft and lacking

in strength. In most application various aluminum alloys are used instead because of

their higher strength and hardness. Aluminum is an excellent thermal and electrical

1



2

conductor, having 59% the conductivity of copper, both thermal and electrical, while

having only 30% of copper density. Aluminum is capable super conductivity, with a

super conducting critical temperature of( 1-2)Kelvin and critical magnetic field about

100 gauss [3]. It is one of the most important metals in modern engineering industry

due to superior physical and mechanical properties. It’s corrosion resistance is based

on compact and chemically stable passive oxide film that is spontaneously formed on

the surface [28]. It is also an interesting one which is commonly used for making an

electrode in the low-cost electric devices [4].

Density - function theory (DFT) is one of the most popular success-full quantum

mechanical approaches to matter [5]. The Density that minimizes the total energy is

the exact ground state density. The basic theory of DFT was proposed by Kohn and

Sham who simplified [6]. The first principle calculation is to find the geometric con-

struction, electronic structure, thermodynamic properties, and Optical properties, so

on by solving Schrödinger equation with self consistent based on atomic components

[7]. The first principle calculation of electronic surface was studied by different schol-

ars analytically. However, the first principle calculation ofAl(100) (surface) is not

well studied computationally. So the aim of this research was study Al(100) surface

based on density functional theory using quantum espresso package.

Electrons and nuclei are the fundamental particles that determine the nature of the

matter of our everyday world: atoms, molecules, condensed matter, and man-made

structures.The theory of electrons in matter ranks among the great challenges of the-

oretical physics: to develop theoretical approaches and computational methods that

can accurately treat the interacting system of many electrons and nuclei found in

condensed matter and molecules.
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1.2 Statement of problem

Recently, there is an interest to know the structure and electronic property of materi-

als to design electronic devices for technological applications. On the other hand the

schrödinger equation of many electron problems were difficult to solve analytically as

well as the usual numerical methods. This challenge to solve many electron prob-

lem can be resolved by modern computational techniques such as density functional

theory. So the purpose of this study was to investigate the structural and electronic

property ofAl(100) surface using density functional theory.

1.3 Objectives

1.3.1 General Objective

The general objective of this thesis was studying the structural and electronic proper-

ties of Aluminum surfaceAl(100) using Density functional theory implementing Quan-

tum Espresso open source code.

1.3.2 Specific objectives

Specific objectives of this study are:

I To determine the total minimum energy of Al(100) surface per atom with respect

to cutoff energy.

I To determine the total minimum energy of Al(100) surface per atom with respect

to k-point sampling.

I To determine the total minimum force ofAl(100) surface per atom with respect to

cutoff energy.
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I To study the total minimum force of Al(100) surface per atom with respect to

k-point sampling.

I To estimate the lattice parameters of Al(100) surface corresponding to minimum

energy state.

I To determine the band structure ofAl(100) surface using density functional theory.

I To find the total density of stateAl(100) surface using density functional theory.

1.4 Basic Research questions

� What is the total minimum energy of Al(100) surface per atom with respect to

cutoff energy?

� What is the total minimum energy ofAl(100) surface per atom with respect to k-

point sampling?

� What is the total minimum force of Al(100) surface per atom with respect to cutoff

energy?

� What is the total minimum force of Al(100) surface per atom with respect to k-point

sampling?

� What is the lattice constant of Al(100) surface?

� What is the band structure of Al(100)surface?

� What is the density of state ofAl(100) surface?

1.5 Significance of the study

The Significance of this study was to understanding the electronic and structural

property ofAl(100) surfaces would helps to use it for different technological appli-

cations. Moreover, the information generated may serve as a base line information
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for researchers for further development of the study. It also helps to compare the

experimental results with respect to our calculation.

1.6 Scope of the Research

Due to time and budget constraint the scope of this study were limited to the calcu-

lation of the total minimum energy, total minimum force, theoretical lattice constant,

electronic band structure and density state of Al(100) surface.

.



Chapter 2

Review Related of Literature

2.1 Introduction

First-principles calculations are away of accurately predicting the electronic structure

of a material with out the expense and logistics of fabrication and testing [8, 51]. Most

materials are termed as solid state materials which can be described as many-body

systems consisting of electrons and nuclei which are interacting electromagnetically.

Quantum many body problems are reduced to interactions of electron systems with

the movement of the potential of the nuclei at fixed positions, this is referred to

as first-principles method .Density functional theory is among the common meth-

ods where the electronic structure calculations are done at ground state in quantum

chemistry and solid state physics. This theory gives solutions to the Schrdinger

equation for many-body or many-electron systems as a function of charge density,

rather than solving the wave-function. In many-electron (many-body) systems, the

exchange-correlation also termed as self-interactions relations, cause electrons to be

indistinguishable, leading to the fact that energy and forces are impossible to be solved

analytically. DFT provides a balance between computational cost and accuracy that

allows quantitative data to be computed for any material model (up to thousands of

6
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atoms). The fundamental problem of describing materials is that of describing the

system of interacting electrons and nuclei. The electronic properties of such a system

containing N electronics can be obtained by solving the many body schrodinger equa-

tion [49]. Solving the Shröodinger equation to obtain energies and forces, require only

the atomic numbers of the constituents as input, and should describe the bonding

between the atoms with high accuracy [9].

2.2 First principles calculations

The first principle calculation material properties, relying, upon quantum mechanics

and electromagnetism [47]. A first principles approach is one which is founded only

on the basic laws of physics [10, 11, 12]. First principle methods are parameters free

and based only on fundamental interactions between electrons and nuclei. The first

principles methods aim at solving the complicated problem of electron moving in the

electrostatic field due to the nuclei. As first approximation, the nuclei are considered

fixed and the problem becomes that electrons only whose motion is governed by the

Schrödinger equation [13]. Using the first principles total-energy calculations the

geometry of the (Al100) surface has been determined [52]. The aim of the first-

principles method is to come up with a solution to the Schrdinger time-independent,

non-relativistic equation[47].

Hϕkr1σ1...rNσN = Ekϕkr1σ1...rNσN (2.2.1)
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2.3 Schrödinger equation for many-body systems

Quantum mechanics is one of the most fundamental theories in physics that governs

the motion of micro particles. To begin with, let’s look at the time-independent

Schrödinger equation for a many-body system with electrons and nuclei. This equa-

tion for such systems is given as:

HΨ(r) = EΨ(r) (2.3.1)

H is the Hamiltonian for the many-body system,

H = − ~2

2me

∑
i

∇2
i−

∑
i,I

ZIe2

| ri −Rj |
+

1

2

∑
i6=j

e2

| r2
i − r2

j |
− ~2

2MI

∑
I

∇2
I+

1

2

∑
I 6=J

ZIZJe
2

| RI −RJ |
(2.3.2)

Where me is the electron mass, MI is the mass of the ion,~ is the plank constant

divide by 2π, e is the electron charge,ZI is the atomic number of the ion, ri is the

position of vector of the electron, RI is the position vector of the ion and ∇2
i , ∇2

I are

the laplacian operators with respect to ri and RI respectively. In eq.(2.3.2) Where

the electrons are represented by lower case subscripts and the nuclei are represented

with upper case subscripts.

According to the Born-Oppenheimer/adiabatic approximation [23], the motion of

nuclei and electrons can be decoupled due to the fact that nuclei are much heavier

than electrons and they move much slowly than the electrons. The electrons can

be considered to respond instantaneously to the motion of the nuclei. Thus, the

Hamiltonian for the many-body system in Eq.(2.3.2) could be decoupled into two

parts.
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We can write equation (2.3.2) as

He = − ~2

2me

∑
i

∇2
i +

1

2

∑
i6=j

e2

| ri − rj |
−

∑
i,I

ZIe
2

| ri −Rj |
, (2.3.3)

and

Hn = − ~2

2MI

∑
I

∇2
i + U(R) (2.3.4)

Where He is the Hamiltonian for the electrons, and Hn is the Hamiltonian for the

nuclei. The total potential of the nuclei is defined as;

U(R) =
1

2

∑
I 6=J

ZIZJe
2

| RI −RJ |
+ E(R) (2.3.5)

Where E(R) is the total energy of the electrons within the set of coordinates R for

the nuclei. The force on each nucleus can be calculated with

FI =
MId

2RI

| dτ 2 |
= − ∂U

∂RI

(2.3.6)

The equilibrium geometry of the nuclei is given by the condition that the force acting

on individual nucleus is zero [27]. In atomic units, the set of Schrödinger equations

for the electrons, i, can be expressed as

−1

2
∇2 + Vn(r) + VH(r) + Vxc(r)Ψi(r) = εiΨi(r) (2.3.7)

The kinetic energy of the electron is expressed by −1
2
∇2, Vn(r) is the potential of the

nuclei, VH(r)is known as the Hartree potential; it is the coulomb interaction between

the electron and the mean field of all the electrons. Ψi(r) Are the single electron

wave functions and εi the corresponding single electron Eigenvalues. The unknown

many -body interactions are placed ion the exchange correlation potential Vxc(r)[10].
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The most commonly used exchange-correlation functional used for calculating the

Al(100) surface in solid is the GGA functional formulated by perdew, Burke and

Ernzer hof(PBE).

2.4 The variational principle for the ground state

When a system is in the state Ψ, the expectation value of the energy is given by

E[Ψ] =
< Ψ | Ĥ | Ψ >

< Ψ | Ψ >
(2.4.1)

Where < Ψ | Ĥ | Ψ >=
∫

ΨΨ ∗ Ψ̂d~x The variational principle state that the energy

computed from a guessed Ψ is an upper bound to the true ground state energy Eo.

Full minimization of the functional E(Ψ) with respect to all allowed N-electron wave

functions will give the ground state Ψo and Energy E[Ψo] = Eo that is

Eo = minΨ rightarrowNE[Ψ] = minΨ → N < Ψ | T + VNe + Vee | Ψ > (2.4.2)

For a system of N electrons and given nuclear potentialV(ext), the variational principle

defines a procedure to determine the ground state wave functionΨo, the ground state

energy Eo[N, Vext] and other properties of interest [19]. In other work, the ground

state energy is a functional of the number of electron N and the nuclear potential

Vext.

Eo = E[N, Vext] (2.4.3)

2.5 Quantum Many-body theory

The state of motion can not be solved analytically for systems in which three or more

distinct masses interact [10]. To solve this problem we can use different approximation
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approaches. In general the N-electron Hamiltonian is given by equation (2.3.2) above.

We can write equation (2.3.2) as

Ĥ = T̂N + T̂e + V̂NN + ˆVeN + V̂ee (2.5.1)

2.5.1 Born-Oppenheimer Approximation

There are many approximations that one must make when dealing with many-body

problem in the realm of solids. The first one is known as the Born-Oppenheimer

approximation. This approximation solves the problem with an assumption that

the nuclei is much heavier compared to electrons that are lighter and therefore will

their movement is slower, then the electronic and nuclear motion are easily separated.

Nuclei are treated to be stationary and the electrons move relative to them. eq.(2.2.1),

can be separated into two independent eigenvalue problems such that the electron and

nuclei wave functions are products of the total wave function [49].

ϕ(~r, ~R) = ψe(~r, ~R)× ψnuc(~r, ~R) (2.5.2)

The nuclei, which are approximated as ions in this case, are assumed to be sta-

tionary. Since the electrons are much less massive and move at much higher velocities

than the nuclei, the positions of the electrons are considered variables and the posi-

tions of the ions are considered parameters.

In order to examine this situation we define the general Hamiltonian for a many-

body system from the standard Hamiltonian. Remember the basic Hamiltonian in

this situation is the potential and kinetic energy as in [13]

H = T + VWhereT =
−~2

2m
∇2 (2.5.3)
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However the potential, V, changes based on the potential of the system. There are

two kinetic energy terms and three potential energy terms that needed to be added.

They can be written as equation (2.3.2). Due to their masses the nuclei move much

slower than the electrons. We can consider the electrons as moving in the field of

fixed nuclei [30]. We can ignore the nuclear kinetic energy and their potential energy

is merely constant. Thus, the electronic Hamiltonian (2.5.1) reduces to

Ĥ = T̂e + ˆVeN + V̂ee (2.5.4)

The solution of the Shrödinger equation with Ĥ, is the electronic wave function ψ and

the electronic energy Eelec is then the sum of Eelec and the constant nuclear repulsion

term Enuc.

Ĥψelec = Eelecψelec (2.5.5)

Etot = Eelec + Enuc (2.5.6)

where, Enuc =
∑M

A=1

∑M
B>A

ZAZB

RAB

This llows a great simplification of the equations when dealing with solids.

2.5.2 The Hartree-Fock Approximation

The Born-Oppenheimer approximation begins the outline a many-body Hamiltonian

in a useful manner by reducing out various terms. But the many-body problem is

a complex one and the Hamiltonian derived in the Born-Oppenheimer is still not

suitable for calculations. There are further approximations that must be made to

achieve better accuracy and minimize calculation time. That is what is involved in

the derivation of the Hatree Energy equations[14]. The Hartree-Fock approximation
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is the method whereby the orthogonal orbitals ψi are found that minimize energy for

this determinantal form of ψ0:

EHF = min(ψHF−>N)E[ψHF ] (2.5.7)

The expectation value of the Hamiltonian operator with ψHF is given by

EHF = 〈ψHF | Ĥ | ψHF 〉 =
N∑
i=1

Hi +
1

2

N∑
i,j=1

(Jij −Kij) (2.5.8)

Hi ≡
∫
ψ∗i (~x)[−

1

2
∇2 − Vext]ψi(~x)d~x (2.5.9)

defines the contribution due to the kinetic energy and the electron-nucleus attraction

and

Jij =

∫ ∫
ψi( ~x1)ψ

∗
i (~x)

1

r12
ψj( ~x2)d ~x1d ~x2 (2.5.10)

Kij =

∫ ∫
ψ∗i ( ~x1)ψi( ~x1)

1

r12

ψij( ~x2)ψ
∗
j (x2)d ~x1d ~x2 (2.5.11)

The integrals are all real, and Jij ≥ Kij ≥ 0.The Jij are called Coulomb integrals,

the Kij are called exchange integrals. We have the property Jii = Kii.

The variational freedom in the expression of the energy equation(2.5.8) is in the

choice of the orbitals. The minimization of the energy functional with normalization

conditions
∫
ψ∗i (~x)ψj(~x)d~x = δij leads to the Hatree-Fock differential equations:

f̂ψi = εiψi, i = 1, 2, ..., N (2.5.12)

These N equations have the appearance of eigenvalue equations, where the Lagrangian

multipliers εi are the eigenvalues of the operator f. The Fock operator f̂ is an effective

one-electron operator defined as

f̂ = −1

2
∇2
i −

M∑
A

ZA
riA

+ VHF (i) (2.5.13)
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The first two terms are the kinetic energy and the potential energy due to the electron-

nucleus attraction. VHF is the Hartree potential, the average potential experience by

the i
′th electron due to the remaining N-1 electrons, and it is given by

VHF ( ~x1) =
N∑
j

(Ĵi( ~x1)− K̂j( ~x1)). (2.5.14)

Ĵj( ~x1) =

∫
(ψj( ~x2))

2 1

r12

d ~x2 (2.5.15)

The Coulomb operator Ĵ represents the potential that an element at position ~x1

experiences due to the average charge distribution of another electron in spin orbital

ψj. The second term in (2.5.15) is the exchange contribution to the HF potential. It

has no classical analog and it is defined through its effect when operating on a spin

orbital:

K̂j( ~x1)ψi( ~x1) =

∫
ψ∗j ( ~x2)

1

r12
ψi( ~x2)d ~x2ψj( ~x1) (2.5.16)

The Hartree-Fock potential is non-local and it depends on the spin orbitals. Thus,

the Hartree-Fock (HF) equations must be solved self-consistently [14].

2.6 Density Functional Theory (DFT)

Physics and chemistry use a theory called Density functional theory (DFT), which

is a quantum mechanical theory, to examine the electronic structure of many body

systems, especially, atoms, molecules and the condensed phases. DFT is one of the

most common and easy methods which can be applied in condensed phases, compu-

tational physics, and computational chemistry [29].

Density functional theory is proposed by kohn and Hohenberg in the 190s. It is

a method to find the Schrödinger equation that reflects the quantum behavior of
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molecule and atoms which finally reflects the properties of materials. The Density

functional theory includes two fundamental mathematical theorems [15].

The first theorem is the ground state energy for Schrödinger’s equation can be

uniquely identified by the distribution of the electron density.

The second theorem define how to get this functional; the electron density which

make the total energy of the functional minimum is the true electron density.

Density functional theory is an extremely successful approach for solving many body

problems’ i.e., it is an exact reformulation of many-body quantum mechanics in terms

of the probability density rather than the wave function. When one know the density

of states one can estimate the kinetic energy of particles in the system. From the

kinetic energy it is possible to estimate the potential. However this estimation is

not complete, for example there is something called exchange correlation energy that

is not included, and that leads to large systematic errors in the final answers. The

exchange correlation energy is actually two terms that have been combined into one

energy. Both energies are unknown in the current formalism and must be approxi-

mated, so to simplify matters they have been combined. One of the primary goals of

density functional theory is to come up with a good approximation of the exchange-

correlation energy, which will be discussed more in the Local Density Approximation

section[13]. The following are among approximation approaches of density functional

theory [31].

2.6.1 The Thomas-Fermi Model

The original density functional theory of quantum systems is the method of Thomas

and Fermi proposed in 1927. Although their approximation is not accurate enough for
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present-day electronic structure calculations, the approach illustrates the way density

functional theory works. In the original ThomasFermi method the kinetic energy

of the system of electrons is approximated as an explicit functional of the density,

idealized as noninteracting electrons in a homogeneous gas with density equal to the

local density at any given point. Both Thomas and Fermi neglected exchange and

correlation among the electrons; however, this was extended by Dirac in 1930, who

formulated the local approximation for exchange still in use today. This leads to the

energy functional for electrons in an external potential Vext(r)

TTF [n] = C1

∫
d3rn(r)

5
3 +

∫
d3rVext(r)n(r) + C2d

3rn(r)
4
3 +

1

2

∫
d3rd3r

n(r)n(r)

|r − r|
(2.6.1)

where the first term is the local approximation to the kinetic energy with C1 =

3
10

(3π2)
2
3 = 2.81 in atomic units,the third terms is the local exchange with C2 =

−3
4
( 3
π
)

1
3 , and the last term is the classical electrostatic Hartree energy. The ground

state density and energy can be found by minimizing the functional E[n] in equa-

tion(2.6.1), for all possible n(r) subject to the constraint on the total number of

electrons[50]

∫
d3n(r) = N (2.6.2)

This is the first density functional theory (1927) [32]. Based on the uniform

electron gas, they proposed the following functional for the kinetic energy:

TTF [ρ(~r)] =
3

10
(3π2)

2
3

∫
ρ

5
3 (~r)d~r (2.6.3)
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The energy of an atom is finally obtained using the classical expression for the nuclear-

nuclear potential and the electron-electron potential:

ETF [ρ(~r)] =
3

10
(3π2)

2
3

∫
ρ

5
3 (~r)d~r − Z

∫
ρ(~r)

r
d~r +

1

2

∫ ∫
ρ(~r1)ρ(~r2)

r12
d~r1d~r2 (2.6.4)

Here, the energy is given completely in terms of the electron density.

In order to determine the correct density to be included in equation (2.6.4), they

employed a variational principle. They assumed that the ground state of the system

is connected to the ρ(~r) for which the energy is minimized under the constraint of∫
ρ(~r)d~r = N .

The attraction of density functional theory is evident by the fact that one equation

for the density is remarkably simpler than the full many-body Schrodinger equation

that involves 3N degrees of freedom for Nelectrons. The Thomas-Fermi approach

has been applied, for example, to equations of state of the elements. However, the

Thomas−Fermitype approach starts with approximations that are too crude, missing

essential physics and chemistry, such as shell structures of atoms and binding of

molecules . Thus it falls short of the goal of a useful description of electrons in

matter.

The basic foundations of DFT were provided in 1964 by Hohenberg and Kohn with

their two fundamental theorems. In 1965 the major milestone in the development of

DFT was introduced by Hohenberg,Kohn and Sham(HKS).They gave the proofs of

these theorems by showing that DFT was an exact theory in same sense as the wave

function theory [16].
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2.7 The Hohenberg-Kohn theorems

The Hohenberg-Kohn formalism [16] of DFT is based on two theorems:

Theorem I

For any system of interacting particles in an external potential Vext(r), the potential

Vext(r) is determined uniquely, up to a constant, by the ground state particle density,

n0(r).

Theorem II

The second HK theorem defines energy functional for the system and proves that

the correct ground state electron density minimizes this energy functional [17].The

energy functional of the density E [n] is:

E[n] =

∫
drVext(r)n(r) + F [n] (2.7.1)

Where F [n] is a universal functional of the density and incorporates the kinetic and

the potential energy.Once the external potential Vext(r) has been fixed, the energy

functional E [n] has its minimum, the ground state energy E0 , at the physical ground

state density n0(r):

E0 = E[n0] (2.7.2)

The Hohenberg-Kohn (HK) theorems have the limited purpose to prove that a univer-

sal functional of the electron density exists; they do not derive its actual expression.

A direct minimization of the functional is usually not applicable, because no good

expression for the kinetic energy as a functional of n is known, except for simple

metals. The Kohn-Sham (KS) scheme, a reformulation of the theory based on the

KS orbitals instead of the mere density, is the starting-point of most of the actual
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calculations.

2.8 Kohn-Sham Equation

In 1965 Kohn and Sham introduced a method for calculating these terms. Replace our

system of interacting electrons with a fictitious system of non-interacting electrons of

the same density. The Kohn-Sham approach is the break-through in modern DTF. It

is tightly linked to the Hartree-Fock Slater apposition of many fermions theory and

considered exchange and correlation energies [18].

The Idea of Kohn and Sham was to treat this as if it is a single-particle problem. the

first term represent the Kinetic Energy and the remaining terms the the Kohn-Sham

potential [19].

VKS(r) = V (r) +

∫
n(r

′
)

|r − r′|
d3r

′
+
δExc[n(r)]

δn(r)′ (2.8.1)

The Kohn-Shame equations are a set of single- particle schrödinger equation with

the potential given by Eq(2.8.1). The kohn-sham equations represents a mapping

of the the interacting many-body system onto a system of non-interacting electron

moving in an effective potential due to all the other electrons [47].

[−1

2
∇2 +

Vext(r)︷ ︸︸ ︷
V (r) + VH(r) + Vxc(r)]︸ ︷︷ ︸

HKS

ψi(r) = εiψi(r) (2.8.2)

Where Vext(r) external potential,ψi eigenfunction. Within the framework of Kohn-

Sham DFT (KS DFT), the intractable many-body problem of interacting electrons

in a static external potential is reduced to a tractable problem of non -interacting

electrons moving in an effective potential. The effective potential includes the external

potential and the effects of the Coulomb interactions between the electrons, e.g., the
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exchange and correlation interactions. Modeling the latter two interactions becomes

the difficulty within KS DFT [30].The electronic density is obtained by occupying the

N solution Ψi(r) with lowest energy;

n(r) =
N∑
i=1

|ψi(r)|2, (2.8.3)

Now the electronic density obtained this way can be used to calculate a new Kohn-

Sham potential following Eq(2.8.1). we continue this iterative procedure until we

reach convergence.

2.9 Exchange -Correlation Energy functional

The simplest approximation forExc(ρ) is the total density approximation (LDA). This

assumes thatExc(ρ) depends only on the charge density at each point and is of the

form

ELDA
XC [ρ] =

∫
ELDA
XC [ρ(r)]d~x3 (2.9.1)

WhereExc(ρ) is the exchange correlation energy per unit volume. By additionally

taking into account the gradient at each point more advanced generalized gradient

approximation’(GGA)exchange correlation functional are obtained which are of the

form

ELDA
XC [ρ] =

∫
ELDA
XC [ρ(r),∇ρ(r)]d

3(r) (2.9.2)

The most commonly used exchange correlation functional we use for calculating the

Al(100) surface in solid is the GGA functional formulated by perdew, Burke and

Ernzer hof(PBE). The DFT is however a very convenient method to treat the corre-

lation effects in a mean field manor. The method was presented by Hohenberg, Kohn

and Sham [10].
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Further more, DFT in the kohn-sham implementation with LDA or GGA approxima-

tion for the exchange -correlation functional has been successfully applied to deduce

structure,electronic as well as other properties of condense matter systems [47].

2.9.1 The Local Density Approximation

:

The simple approximate exchange-correlation (energy reduction due to a spatial sep-

aration between the electrons with the same spin and opposite spin) functional is the

local density approximation (LDA).

This is simplest approximation, and can be written as:

EXC−LDA[ρ(r)] =

∫
ρ(r)εXC−unif (ρ(r))d(r) (2.9.3)

Where εxc−unif is the exchange-correlation energy per particle of the homogeneous

electron gas of density (ρ(r)), i.e. The exchange-correlation energy density is taken

to be exceedingly similar, differing only in how their correlation contributions have

been fitted to the many body free electron gas data. The LDA is valid only for slowly

varying densities. Experience with calculations of atoms, molecules and solids shows

that Eq. (2.7.3) can in general also be applied to these systems.

2.9.2 The Generalized Gradient Approximation

These are the second generation functional(sitting on the second rung of Jacob’s

ladder) in which the gradient of the density,∇ρ(r), at each coordinate is taken into

account as well as the density itself:

E(xc−GGA)[ρ(r)] =

∫
ρ(r)ε(xc− unif)(ρ(r))∇∇(r)d(r) (2.9.4)



22

Thus GGAs are ”semi-local” functional, comprising corrections to the LDA while

ensuring consistency with known sum rules. The GGA functional depends on the

local electron density as well as the spatial variation of the electron density that is

represented by the density gradient. The GGA functional can be written as

EGGA
XC [n] =

∫
d−→r εxc[n]Fxc[n,

−→
∇n]n(r) (2.9.5)

The EGGA
XC [n] is the exchange correlation energy per particle of an electron gas and

Fxc is a functional of the electron density and its gradient. The GGA method gives

better total energies, especially for small molecules, but computationally it is more

time consuming than LDA [31, 33]. Generally, GGA has the following advantages

over LDA [34, 35]:

• GGA improves ground state properties for light atoms, molecules and clusters.

• GGA predicts the correct magnetic properties of 3d transition metals such as

body centered iron.

• Though GGA seems to be superior compared to LDA, it has several drawbacks.

A GGA method fails to accurately treat the hydrogen bond. This defect is

clearly manifested through expansion and hence softening of bonds [[35]

2.10 Periodic supercells

We defined the shape of the cell that is repeated periodically in space, the supercell,

by lattice vectors a1, a2, and a3. If we solve the Schroödinger equation for this periodic

system, the solution must satisfy a fundamental property known as Bloch’s theorem.
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2.10.1 Bloch’s theorem

Bloch’s theorem states that in a periodic solid each electronic wave function can be

written as the product of cell-periodic part and wave like part [36].

Ψk(r) = ei
−→
K.−→r uk(r) (2.10.1)

Where uk(r) is periodic in space with the same periodicity as the supercell. That

is, uk(r + n1a1 + n2a2 + n3a3) = uk(r) for any integers n1, n2, and n3. This theorem

means that it is possible to try and solve the Schrödinger equation for each value of

k independently.

The cell-periodic part of the wave function can be expanded using a basis set consist-

ing of a discrete set of plane waves whose wave vectors are reciprocal lattice vectors

of the crystal,

uk(r) =
∑
G

ci,Ge
iG.r (2.10.2)

Where the reciprocal lattice vectors G are defined by G.l = 2πn for all l where l

is a lattice vector of the crystal and n is an integer. Therefor each electronic wave

function can be written as a sum of plane waves,

Ψk(r) =
∑
G

ci,k+Ge
[i(k+G).r] (2.10.3)

The electronic wave functions at each k.point are now expressed in terms of a discrete

plane wave basis set. In principle this Fourier series is infinite. However, in practice

we cannot work with an infinite basis set, it has to be truncated. The number of

plane waves can be restricted by placing an upper boundary to the kinetic energy of

the plane waves. This boundary is called energy cut-off Ecut.
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2.10.2 Energy cutoffs

Our lengthy discussion of k space began with Bloch’s theorem, which tells us that

solutions of the Schrödinger equation for a supercell have the form

Ψk(r) = ei
−→
K.−→r uk(r) (2.10.4)

where uk(r) is periodic in space with the same periodicity as the supercell. It is now

time to look at this part of the problem more carefully. The periodicity of uk(r)

means that it can be expanded in terms of a special set of plane waves:

uk(r) =
∑
G

ci,Ge
iG.r (2.10.5)

where the summation is over all vectors defined by G = n1b1+n2b2+n3b3 with integer

values for ni. These set of vectors defined by G in reciprocal space are defined so that

for any real space lattice vector li ,G.l = 2πn.

Combining the two equations above gives

Ψk(r) =
∑
G

ci,k+Ge
[i(k+G).r] (2.10.6)

According to this expression, evaluating the solution at even a single point in k space

involves a summation over an infinite number of possible values of G. This does not

sound too promising for practical calculations! Fortunately, the functions appearing

in Eq. (2.7.6) have a simple interpretation as solutions of the Schrödinger equation:

they are solutions with kinetic energy

E =
~2

2m
|k +G|2 (2.10.7)

It is reasonable to expect that the solutions with lower energies are more physically

important than solutions with very high energies. As a result, it is usual to truncate
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the infinite sum above to include only solutions with kinetic energies less than some

value:

Ecut =
~2

2m
G2
cut (2.10.8)

The infinite sum then reduces to

Ψk(r) =
∑

|G+k|<Gcut

cG+ke
[i(K+G)r (2.10.9)

This expression includes slightly different numbers of terms for different values of

k. The discussion above has introduced one more parameter that must be defined

whenever a DFT calculation is performed the cutoff energy,Ecut. In many ways, this

parameter is easier to define than the k.points , as most packages will apply sensible

default settings if no other information is supplied by the user. Just as with the k.

points , it is good practice to report the cutoff energy used in your calculations to

allow people to reproduce your results easily [37].

2.10.3 K.points sampling

In computational area, the calculation of many properties of materials needs the

evaluation of integrals over the Brillouin zone in reciprocal spaces. These integrals

are typically approximated using a discrete set of points which we called K-points.

The required amount of k-point depends on the material and size of the unit cell:

� Metals required many points

� Insulators semiconductors and molecular crystals typically required fewer k-points

� To determine suitable k-points convergence study in which we systematically increase

the quality of the k-space sampling unit the quality that you are interested (e.g energy

or lat tice parameter) is converged.
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The solution that is used most widely was developed by Monkhorst and pack in 1976.

Using these methods, one can obtain an accurate approximation for the electronic

potential and the total energy of an insulate or semiconductor by calculating the

electronic states at a very small number of k.points. The electronic potential and

total energy are more difficult to calculate if the system is metallic because a dense

set of k.points is required to define the Fermi surface precisely. The magnitude of any

error in the total energy due to inadequacy of the k.points sampling can always be

reduced by using a denser set of k.points. The computed total energy will converge as

the density of k.points increases, and the error due to the k.point sampling approaches

zero.

In principle, a converged electronic potential and total energy can always be obtained

provided that the computational time is available to calculate the electronic wave

functions at sufficiently dense set of k.points. The computational cost of performing

a very dense sampling of k.space can be significantly reduced by using the k.point

total energy method [39].

2.10.4 Plane wave basis sets

Bloch’s theorem states that the electronic wave functions at each k.point can be

expanded in terms of a discrete plane-wave basis sets.

In principle, an infinite plane wave basis set is required to expand the electronic wave

function. However, the coefficients Ci,K+G for the plane waves with small kinetic

energy. ~2

2m
|K+G|2 are typically more important than those with large kinetic energy.

Thus, the plane wave basis set can be truncated to include only plane waves that have

kinetic energies less than some particular cutoff energy. If a continuum of plane wave

basis states were required to expand each electronic wave function, the basis set
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would be infinitely large number matter how small the cutoff energy. Application of

the Bloch theorem allows the electronic wave functions to expanded in terms of a

discrete set of plane waves. Introduction of any energy cutoff to discrete plane wave

basis set produces a finite basis set.

The truncation of plane wave basis set at a finite cutoff energy will lead to an error in

the computed total energy. However, it is possible to reduced the magnitude of the

error by increasing the value of cutoff energy. In principle, the cutoff energy should

be increased until the calculated total energy has converged [40].

2.11 Geometry optimizations

Geometry optimization is used to find minima on the potential energy surface, with

these minimum energy structures representing equilibrium structure. Optimization

also is used to locate transition structures, which are represented by saddle points on

the potential energy surface. Optimization to minima is also referred to as energy

minimization. During minimization, the energy of molecule is reduced by adjust-

ing atomic coordinates. Energy minimization is done when using either molecular

mechanics or quantum mechanics methods or it must precede any computational

analyses in which these methods are applied [20].

2.12 Plane-waves and pseudo potentials

In calculation of solids or condensed matter [21], which will be the main types of

systems that (DFT) is applied to in this thesis, plane-waves basis set is a very common

choice. In many cases, combined plane-wave is the pseudo potential approach for

treating the strong interactions between core electron and nuclei. In this we will be
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briefly discuss plane waves and pseudo potentials.

2.12.1 Pseudo potential

Pseudo potentials are well established that most physically interesting properties of

solids are determined by the valence electrons rather than the core electrons. Mean

while, the deeply bound core electrons within plane-wave basis sets, require a huge

amount of basis functions for their description. To relieve this problem, the pseudo

potential approximation replaces the strong ionic potential with a weaker pseudo

potential. In general, there are two main purposes of the pseudo potential formalism.

First, to use a much weaker pseudo potential to replace core electrons which due

to their deep potential need to be described by many plane-wave basis functions.

Second,to eliminate the rapid oscillations of the valence electron wave function in the

core region. The most common general form of a pseudo potential is,

Vps =
∑
lm

| Ylm > Vl(r) < Ylm | (2.12.1)

Where Ylm are the spherical harmonics.

A pseudopotential is developed by considering an isolated atom of one element, but

the resulting pseudopotential can then be used reliably for calculations that place this

atom in any chemical environment without further adjustment of the pseudopotential.

This desirable property is referred to as the transferability of the pseudopotential.

The details of a particular pseudopotential define a minimum energy cutoff that

should be used in calculations including atoms associated with that pseudopotential.

Pseudopotentials requiring high cutoff energies are said to be hard, while more compu-

tationally efficient pseudopotentials with low cutoff energies are soft. The most widely

used method of defining pseudopotentials is based on work by Vanderbilt; these are
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the ultrasoft pseudopotentials (USPPs). As their name suggests, these pseudopoten-

tials require substantially lower cutoff energies than alternative approaches [22, 37].
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2.13 Self-consistent-field calculation

In (1897-1958) D. R. Hartree came up with the first idea of getting Self Consistent

Field (SCF) solutions to a many-electron problem as a strategy to break the state.

D. R. Hartree was helped by his father, William Hartree, in solving the numerical

problems involved in solving the SCF problem [41, 42, 43]. Here we focus discussion

on SCF in DFT calculations, the most time-consuming part of an SCF calculation is

in matrix diagonalization, which consists of computing the self-consistent solutions of

the following Kohn-Sham equation (in atomic units):

[−∇
2

2
+ Vext(n(r), r)]ψi(r) = εiψi (2.13.1)

Where ψi(r) is a wave function, εi is a Kohn-Sham eigenvalue. The external potential

Vext(n(r), r) = Vion(r) + VH(n(r), r) + Vxc(n(r), r), (2.13.2)

includes the ionic potential Vion, the Hartree potential VH and the exchange-correlation

potential Vxc. In DFT the external potential depends only on n(r)the charge density.

The charge density is given by

n(r) = 2
nocc∑
i=1

|ψi(r)|2, (2.13.3)

where nocc is the number of occupied states (half the number of valence electrons

in the system) and the factor of two comes from spin multiplicity. Self-consistent

iterations for solving this problem consist of starting with an initial guess of the

charge density n(r), then obtaining a guess for Vext and solving Kohn-Sham equation

for wave function ψi(r) to update charge density and external potential. Then Kohn-

Sham equation is solved again for the new wave function and the process is carried
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on until the difference between two consecutive external potential is below a certain

tolerance (equivalently, the wave functions are close to stationary) [42, 43, 44].

2.13.1 Algorithm Self-Consistent Iteration

The SCF method is an iterative procedure which yields a self-consistent set of wave

functions and orbital energies. It consists of the following steps.

1. An initial guess for the charge density.

2. Solve [−∇2

2
+ Vext(n(r), r)]ψi(r) = εiψi(r) for wave function ψi(r), i = 1, 2, ..

3. Compute new charge density n(r) = 2
∑nocc

i=1 |ψi(r)|2

4. Solve for new Hartree potential VH .

5. Update Vxc and Vion.

6. If the wave function does not satisfy the right boundary condition, we return to

step 3 in order to make another guess for the energy εi(r). If the wave function

satisfies the right boundary condition, the calculation returns to step 2 and the

newly obtained ψi(r) plays the role of wave functions [45].

2.14 Quantum ESPRESSO

Quantum ESPRESSO Software package is a first-principle calculation software based

on the density functional theory applying of the plane-wave basis set and the pseudo-

potential method. It includes two major modules: PWscf and CPMD. In addi-

tion, there are two auxiliary graphical interface modules for input parameter set-

ting and generation of potentials. It can compute Fermi surface(metals), electro-

acoustic coupling and supper conducting properties(including, isotropic,anisotropic
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super-conducting features).

The advantage of quantum ESPRESSO are functional modularity (easy to add new

modules) and free open source. Quantum espresso is a variety of numerical and al-

gorithms aimed at a chemically realistic modeling of materials from the nano scale

upwards, based on the solution of the density functional theory(DFT). It is an in-

tegrated suite of computer codes for electronic structure calculations and materials

modeling based on DFT, plane waves and pseudo potentials(norm conserving, ultra-

soft and projector augmented wave) to represent the electron-ion interactions. The

ESPRESSO stands for opEn source package for research in Electronic structure, sim-

ulation and Optimization. The codes are constructed around the use of periodic

boundary conditions, which allows for a straightforward treatment of infinite crys-

talline systems.

Quantum espresso can do several important basic computations such as calculation of

the Kohn-Sham(KS) orbital’s and energies for isolated systems, and of their ground

state energies , complete structural optimizations of the atomic coordinates, ground

state of magnetic or spin polarized systems,..etc [46].

2.14.1 The Accuracy of K-points sever in Quantum ESPRESSO

In computational material area, various properties of materials are determined by

integrals over the Brillouin Zone in reciprocal space. K-points are a set of discrete

points to approximate these integrals. we try to test the efficiency of K-point server in

Quantum ESPRESSO to see if it can reduce the computing space and save time while

maintaining accuracy. To test for the effectiveness of our k-points server, we used

density functional theory(DFT) as implemented inQuantum ESPRESSO to calculate

the converged energies of randomly selected materials.
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To determine the number of k-point required to calculate a converged energy value,

we generated k-point grids for different values.

2.14.2 Brillouin zone

Quantum ESPRESSO (QE) support for the definition of high symmetry lines inside

the Brillouin zone (BZ) is still rather limited. However QE can calculate the coordi-

nates of the vertexes of the BZ and of particular points inside the BZ The principal

direct and reciprocal lattice vectors, as implemented in the routine latgen, are illus-

trated here together with the labels of each point. These labels can be given as input

in a band or phonon calculation to define paths in the BZ. This feature is available

with the option tpiba b or crystal b in a bands calculation or with the option q in

band form in the input of the matdyn.x code. Lines in reciprocal space are defined

by giving the coordinates of the starting and ending points and the number of points

of each line. The coordinates of the starting and ending points can be given explicitly

with three real numbers or by giving the label of a poi nt known to QE. For example:

X10

gG25

0.50.50.51

indicate a path composed by two lines. The first line starts at point X, ends at point

G, and has 10 k points. The second line starts at G, ends at the point of coordinates

(0.5, 0.5, 0.5) and has 25 k points. Greek labels are prefixed by the letter g: gG

indicates the G point, gS the S point etc. Subscripts are written after the label:

the point P1 is indicated as P1. In the following section you can find the labels of

the points defined in each BZ. There are many conventions to label high symmetry

points inside the BZ. The variable point label type selects the set of labels used by
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QE. Other choices can be more convenient in other situations. The names reported

in the web pages http://www.cryst.ehu.es/cryst/get kvec.html are available for some

BZ. You can use them by setting (point label type = BI), others can be added in the

future. This option is available only withibrav = 6 and for all positive ibrav with the

exception of the base centered monoclinic (ibrav = 13), and triclinic (ibrav = 14)

lattices. In these cases you have to give all the coordinates of the k-points[48].

ibrav=6, simple tetragonal lattice The primitive vectors of the direct lattice are:

a(1) = a(1, 0, 0), a2 = (0, 1, 0), a3 = a(0, 0, c/a) (2.14.1)

while the reciprocal lattice vectors are:

b(1) = 2π/a(1, 0, 0), b2 = 2π/a(0, 1, 0), b3 = 2π/a(0, 0, c/a) (2.14.2)
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Figure 2.1: Schematic illustration of the replacement of the all-electron wavefunction
and core potential by a pseudo-wavefuntion and pseudopotential.



Chapter 3

Research Methodology

3.1 Materials

The Structural and electronic properties of Al(100)surface has been studied theo-

retically using density functional theory. Materials used to accomplish this research

include published articles, books, thesis and dissertations. Quantum ESPRESSO

software is used to calculate out puts to be analyzed. Latex software is used to write

the research.

3.2 Methodology

First principle calculation with in density functional theory are carried out using

the PWscf code of Quantum-ESPRESSO distribution. The perdew-Zunger func-

tional with in the Local density approximation (LDA) is used. For the Brillouin-zone

integration, we use a monkhorst-pack set of special K-points. A normcon-serving

pseudo-potential is used for Al with electron in a 3s23p1configuration. Al(100)surface

were constructed using supercell with a thin slab. for the slabs considered, each layer

in the unit cell contains one in-equivalent atom. For Al(100) a tetragonal cell is used

with a base formed by ao/
√

2[110] and ao/
√

2[11̄0], where the inter-layer spacing is
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a0/2 and ABAB stacking is used, where ao is the equilibrium lattice parameter[52].

Quantum ESPRESSO package is an integrated suite of computer codes for first prin-

ciple calculations and materials modeling based on density -functional theory DFT,

plane waves basis sets (PW) and pseudo potential [24]. It is free under the condi-

tions of the GNU General public license GPL [18]. We will be using the Quantum

-Espresso package as our first-principles code. Quantum-Espresso is a full ab initio

package implementing electronic structure and energy calculations, linear response

method. Inside this package, PWSCF is the code we will use to perform total en-

ergy calculations. PWSCF uses both norm-conserving pseudo potentials(pp) and

ultra soft pseudo potentials(US-PP), with density functional theory(DFT) [25]. The

most important of input parameters in Quantum Espresso are the atomic geometrics

(Number and types atoms in the periodic cell, brave’s-lattice index, crystallographic

or lattice constants), the kinetic energy cut off and the type of pseudo potentials [26].

Firstly, an initial guess for the electron density ρ(r) is assumed, which is required for

the calculation of Veff (r), the diagonilization of the Kohn-Sham equations, and the

succeeded evaluation ofρ(r)along with total minimum energy. As long as the conver-

gence criterion is not fulfilled, the numerical procedure is continued with the lastρ(r)

instead of the initial guess. When criterion is satisfied, various output quantities [6]

are computed.
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Each of these input parameters have meanings that need to be considered. We

can find a more detailed description for all the input parameters of pw.x in the official

PW documentation of QE. The most relevant lines for the calculations related to this

are the following:

The line

calculation = scf

indicates that is a self-consistent calculation(SCF) to find the total energy of the sys-

tem. The line

prefix = al

is a tag the code uses to identify this calculation. The line

Pseudo−dir = ./pseudo/

indicates the path to the place where the pseudopotential file is located. we provide

the necessary pseudopotential (Al.pz.vbc.UPF)

The line

outdir = ./tmp/

indicates the path to the dirctory to be created by the code.

The line

ibrav = 6

indicates the Bravais-lattice index. In this case ibrav = 6 means that we are dealing

with the tetragonal primitive unit cell.

The line

celldm(1) = 5.42

is the value of the lattice parameter in Bohr atomic units. The line

celldm(3) = 6.36
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is the value of lattice parameter in Bohr atomic units. The line

nat = 4 indicates the number of atoms in the unit cell. The line

ntyp = 2

indicates the number of types of atoms in the unit cell. The line

ecutwfc = 15.D0,

indicates the value of the kinetic-energy cutoff in Rydberg units. This value

determines how many plane waves will be used in the expansion of kohn-sham wave-

functions during the iterative of the kohn-sham equations.

The line

occupations =’smearing’,

indicates the system to use the smearing method. The line

smearing = m-v ,

it tells the system the type of distribution to use when smearing.

The line

conv-thr = 1.D-10,

indicates the convergence threshold in Rydberg units during the iterative solution of

the kohn-sham equation. When this threshold is reached, the calculation will stop.

The line

mixingbeta = 0.7D0,

it tells the system that when it gets results to feed them back into the calculations

with a percent equal to the mixing beta parameter
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The line

ATOMIC SPECIES

Al 26.98 Al.pz.vbc.UPF

indicates the label of the atom, its mass and the name of the pseudopotential file.

The line

K.poitsautomatic

6 6 1 0 0 0

indicates the K points sampling of the Brillouin zone.
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Figure 3.1: Self Consistent Field of flow chart of the iteration scheme.



Chapter 4

Results and discussions

Introduction

In this work , the structural and electronic properties of Al(100)surface was calcu-

lated within the frame work of the density functional theory. One of the important

aspects in studied Aluminum surface is the total minimum energy. Results are mainly

presented in figures. The first results are the total energy per atom and second re-

sults are forces values for bulk Aluminum. Then comes the results for the equilibrium

lattice constants, band structure and density of state with LDA Approximation.
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4.1 Structural Calculation of Al(100)surface Pa-

rameters

The software xcryden can import QUANTUM ESPRESSO input files and visualize

the geometrical structures of Al(100)surface. The primitive cell of Al(100)is shown

in Figure 4.1. A single-layer of Al is composed of hexagons with Al − Al − Al − Al

atoms situated at a positions of:

ATOMIC-POSITIONS

Al: (0.50000000 0.50000000 0.500000000000000)

Al: (0.50000000 0.50000000 3.5355339059327378)

Al: (0.00000000 0.000000002.8284271247461898)

Al: (0.50000000 0.50000000 2.1213203435596428)

Figure 4.1: Geometrical Structure of tetragonal Al(100)surface
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4.2 Convergence Test of Total energy of Al(100)

surface per atom with respect to energy cut-

offs

To compute The Total energy ofAl(100)surface with respect to energy cutoff, The

input file is initially adjusted to have 6× 6× 1 = 36 k-points mesh; some of these k-

points have the same energy because of the symmetry of the crystal. The calculation

was done using different cutoff values, from 15Ry to 160Ry with 5Ry interval and

lattice constant of a = 5.42 Bohr and C = 6.36 bohr.

. Here we see that, the total minimum energy of Al(100)surface is calculated as

a function of energy cutoff. An increment of energy cutoff for wave function is made

until the convergence is achieved (i,e.,the plane where the energy becomes nearly con-

stants). The energy cutoff versus total energy graph is shown in figure 4.2. From the

graph we can observe that the total minimum energy converges at 55 Ry plane wave

cutoff energy and the total ground state energy had its minimum at -16.578404406

Ry whose plot is shown below. Moreover the total minimum energy is monotonically

decreasing with increasing energy cutoffs for wave function. The accuracy of the

ground state energy depends on the number of basis functions. However, we can get

energy that close to ground state energy as the number of basis functions approaches

infinity.



45

Figure 4.2: Total energy of Al100 with respect to energy cutoff

4.3 Convergence Test of Total minimum energy

ofAl100 with respect to K.point grid sampling

To compute the Total energy of Al(100) surface per atom with respect to K.point

values are used starting from 2 × 2 × 1 up to 36 × 36 × 1 with step by step. Keep-

ing the cutoff energy at 15 Ry and lattice constant of a=5.42 bohr,C=6.36 bohr.

A convergence test of total energy for k.point sampling was performed on Al(100)

surface. The total minimum energy of Aluminum(100)surface was calculated using
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various sets of ranging from 2 × 2 × 1 up to 36 × 36 × 1. In each of these cases the

plane wave kinetic energy cutoff 15Ry was used. The Total energy of Al(100)surface

is calculated as a function of k.points grid size using PWSCF code. For this calcu-

lation, the other variables (lattice constant, energy cutoff) are kept constant. The

total energy of Al versus k.points grid size is shown in Figure 4.3. Convergence of

the Total energy is achieved at 17× 17× 1 k-points grids and the total energy at this

point is −16.56548126 Ry whose plot is shown below.
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Figure 4.3: Total energy of Al with respect to K.point grid size

4.4 Convergence Test of Total minimum forces of

Al(100)surface per atom with respect to en-

ergy cutoff

Initially, the net forces acting on Al(100)Surface are zero in x ,y and z directions.

This is because of the result symmetry, which cancels out forces. However, it is

possible to create forces by displacing a aluminum atom +0.5 Bohr in the x, y and
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z directions (fractional coordinates), net force is created. Here we calculated total

force onAl(1000)surface as a function of plane wave cutoff energy by keeping other

parameters fixed. For this calculation, we used the lattice constantsa = 5.42 Bohr,

C = 6.36 bohr and 6× 6× 1 k-points grid. In this simulation convergence is achieved

when the energy cutoff is equal to 42Ry. A total force value at this energy cut-

off is 0.00676894Ry/Bohr. The graph of energy cutoff against total force acting

ofAl(100)surface is shown in figure 4.4.
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Figure 4.4: Total forces of Al with respect to energy cutoffs

4.5 Convergence Test of Total force of Al(100)surface

per atom with respect to K.point sampling

In this case, we have calculated the force on 0.5 Bohr displaced Al(100)surface as a

function of k-point grid size, by keeping other parameters (lattice constant, energy

cutoff) constant. The calculated force with respect to k.point grid is shown above

in table 4.4. Moreover the trend of total force for increment of grid size is described
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in Figure 4.5. As it is observed in Figure, the total force converge at the grid size

of 17 × 17 × 1k-point mesh; and its value is 0.00650925 Ry/ Bohr. Generally, it is

true that different structural geometries will require different k-point meshes in order

to reach convergence. However, the change in required k-point density for a slight

shift in atoms is expected to be large than the change in required k-point density if

we completely change the crystal symmetry for basic centered cubic to face centered

cubic.
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Figure 4.5: Total force of Al(100)surface with respect to k.point grid size

4.6 The equilibrium lattice constant of Al(100)surface

with respect to total minimum energy

The equilibrium lattice constant of Al(100) surface was calculated by keeping the cut

off energy at 50 Ry and k-point grids at 17 × 17 × 1. In this calculation the total

energy of Al(100)was computed by changing the lattice parameter from 4.42 bohr to

6.42 bohr in step of 0.1 and (C × a)/aconst values calculated.

The structure of Al(100) shown in figure 4.1 is tetragonal. so the two dimensional
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a and b are equal and represented by initial values of a = 5.42 Bohr and the third di-

mension is represented by C of initial values C=6.36 Bohr.The total energy of Al(100)

surface was computed for different values of lattice parameters ranging from 4.42 bohr

to 6.42 bohr under a constant cutoff energy 50 Ry and k-point grids 17× 17× 1. The

result of out put shows that the total energy is decreasing until the lattice parameter

is 5.32 bohr and then start increasing from 5.35 bohr up to 6.42 bohr lattice. This

shows that the total energy is converged at a lattice value a=5.32 bohr.Similarly to

calculate value of C, the value of a = 5.42 bohr was adjusted to be constant and

computation was made for each value of C from 5.369 bohr to 7.799 bohr. The lattice

constant (c) versus total energy graph is shown in figure 4.6. The graph shows that

the equilibrium lattice constant of c is 6.48 bohr . The equilibrium lattice constant

a = 5.22 bohr and c = 6.48 bohr which were found from the computation are closer

to the experimental value of a = 5.42bohr and c = 6.36bohr. this was better shown

in the plot below.
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Figure 4.6: Total energy of Al(100)surface versus lattice constant

4.7 The equilibrium lattice constant of Al(100) sur-

face per atom with respect to total minimum

force

In this case, the calculation was done using different lattice constant a values from

4.42 bohr to 6.42 bohr and lattice constant C values calculated from 7.799 bohr to

5.36935 bohr. Here the other variables such as k-point, energy cutoff, are kept fixed.

This is show that the total forces converged at 0.00182 Ry/bohr, lattice value
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Figure 4.7: Total force of Al(100)surface versus lattice constant
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a = 5.3 bohr and similarly total force are converged at 0.001120045 Ry/bohr at

lattice value c = 6.48 bohr.

4.8 Band Structure of Al(100)surface

The band structure is a visual representation of the energy levels that the electrons

can have inside the solid. These calculations are done almost entirely within the

Quantum Espresso suite of programs. If the objective is just to complete a band

structure calculation, that is accomplished by calculating an integral over the brillouin

zone of the crystal. However, Quantum Espresso does the numerical integration in an

earlier step so then all that is needed is to designate the points desired for plotting.

The brillouin zone of Al(100)is a two dimensional tetragonal. The band structure and

outline of the Brillouin zone is well known. The figure 4.8 is the authors depiction of

the Brillouin zone, and Table below is outlines the coordinates of the key points in the

brillouin zone.the table outlines the coordinates in multiples of a; b; c from equation

2.14.2

Table 4.1: Brillouin Zone Coordinates Table

Coordinates X Y Z
Γ 0.00000 0.00000 0.00000
X 0.00000 0.50000 0.00000
M 0.50000 0.50000 0.00000
Γ 0.00000 0.00000 0.00000

In this work, the energy cutoff and the BZ sampling were chosen to converge the

total energy with a value of 15 Ry and we generated 71 K-points in crystal coordinate.

From the Figure 4.9 we can observe that there is no band between balance band and
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Figure 4.8: Band Structure of primitive unit cell of 2D of Al(100)surface

the calculation band of Al(100) surface. It looks like a metallic or semi-metallic

structure with zero band gap.
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4.9 Density of State (DOS) of Al(100) surface

The density of states (DOS) is essentially the number of different states at a particular

energy level that electrons are allowed to occupy, i.e. the number of electron states

per unit volume per unit energy. Fermi level is indicated at -3.89 eV. The calculate

Density of state is continuous from valence band to conduction band with out any

discontinuity and confirms that Al(100) is a metallic system.
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Figure 4.9: Band Structure of primitive unit cell of 2D of Al(100)surface



Chapter 5

Conclusion

The electronic and structural properties of Al(100)surface was investigated with in

the frame work of the density functional theory, plane wave basis sets, and pseudo

potentials (ultrasoft). All calculations have been carried out with Quantum Espresso

package (software). The total energy calculation is as a function of cut-off energy

and Monkhorst pack-grid size, respectively, fixing the other parameters constant.

The total energy convergence test is achieved, at the energy cut-off 55 Ry for the

first case and at 6 × 6 × 1 k-point grid size for the second case. The total energy

is −16.56548126 Ry . As a function of cutoff energy and Monkhorst-Pack grid is

calculated by displacing Al atom by +0.5bohr. Total force convergence test is achieved

for the cutoff energy 42 Ry and for Monkhorst-Pack grid at 6×6×1 k-point grid size.

The optimized Lattice constants of Al(100) surface have been determined to be a =

5.22 Bohr, c = 6.48 Bohr, and c/a = 6.24 bohr with respect to our computational

calculation. The experimental values of Al(100) surface is (a = 5.42 Bohr, c = 6.36

Bohr, and c/a = 6.36 bohr). The band structure calculation shows that there is

overlap between the conduction band and the valance band. That is there is no band

gap between the valence band and conduction band. This result tells Al(100) surface
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is a metallic system. Moreover the absence of discontinuity in the total Density of

state near the Fermi level (from valence band to conduction band) Confirms Al(100)

is a metallic system.
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