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Abstract
In recent years, the success of deep learning in many different fields of Engineering has attracted attention. Baseflow sepa-
ration is one of the Engineering problems which remains difficult due to different hydro-climatic circumstances. In this 
study, we proposed a hybrid baseflow prediction model by combining analytical methods and deep learning algorithms. Six 
analytical methods were chosen and their performance was compared by different metrics. Baseflow-Lyne and Hollick algo-
rithm (BFLOW-LHA) outperforms the others in terms of R2, Mean Absolute Error (MAE), BIAS, Nash–Sutcliffe Efficiency 
(NSE), and Root Mean Squared Error (RMSE) metrics. The proposed model was trained using streamflow and baseflow data 
generated by the BFLOW-LHA with the Dawa Melka Guba dataset and then tested on prediction for the basin's remaining 
three watersheds. The experimental results show that the proposed model improves the prediction of baseflow as compared 
with BFLOW-LHA and can be used for watersheds with similar characteristics.
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Introduction

Following a rainfall event, streamflow is typically assumed 
to be made up of three components: rapid flow, interflow, 
and baseflow (Tallaksen 1995). Baseflow has been defined 
as the component of streamflow that is always the slowest 
to respond and lasts the longest groundwater aquifer flow, 
flow from groundwater storage or other delayed sources, as 
well as groundwater contribution to streamflow (Tallaksen 
1995; Aboelnour et al. 2020; Murphy et al. 2011; Lott and 
Stewart 2016). Baseflow sustains streamflow during low 
rainfall periods (Pielke et al. 2007). The analysis of flow 
hydrographs, comprising base flow, flood peaks and volume, 
and groundwater contributions in the base flow, is one of the 
most important aspects of engineering hydrology (Sivapalan 
2018).

Baseflow separation is important in hydrological research 
such as water resource management, basin hydrology 

studies, rainfall-runoff modeling, water quality modeling and 
flow condition, comparing alternative land use management 
effects on groundwater, calibration and validation of hydro-
logical models, and determining an index to compute rainfall 
excess and rainfall losses in a watershed (Spongberg 2000; 
Stewart et al. 2007). Baseflow behavior offers information on 
groundwater quality, seasonal low flows, and instream ecol-
ogy (Duncan August 2019). As a result, a baseflow estima-
tion can be used for irrigation planning, agriculture, drought 
management, groundwater recharging, and reducing water 
losses (Sivapalan 2018).

One of the major uses of baseflow separation, particularly 
in numerical modeling and analysis of the water balance at 
the basin-wide, is evaluating the contribution of ground-
water to river flow which can be expressed by Base Flow 
Index (BFI) (Sivapalan 2018). The BFI (a dimensionless 
variable that always ranges from 0 to 1) is the ratio of cumu-
lative baseflow and cumulative total discharge throughout 
the record of analysis. It is a hydrogeological parameter that 
can be used to define un-gauged basins, and it is supposed 
to illustrate geology's impact on basin low flows (Young 
et al. 2000; Roy and Mistri 2013). BFI has a variety of uses, 
including rainfall-runoff modeling, and can be used to com-
pare the flow characteristics of different catchments and as 
an indicator of watershed features (Sivapalan 2018).
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It has been challenging to define baseflow accurately or 
to consistently distinguish it from other streamflow compo-
nents (Nathan and McMahon 1990). During a rainfall event, 
when groundwater is being replenished and the total hydro-
graph is dominated by the quicker components of runoff, 
baseflow is more difficult to describe or measure (Duncan 
2019). The baseflow component of streamflow is generally 
determined by separating a stream hydrograph into two com-
ponents: baseflow and runoff (Lott and Stewart 2016). The 
very smooth decline observed over extended periods of lit-
tle or no rain is the most recognized phase of baseflow and 
the most accessible to quantitative examination (Nathan and 
McMahon 1990).

Baseflow separation in an acceptable manner has long 
been a desirable but elusive aim (Duncan 2019). Because 
direct measurement of baseflow is difficult, comparing the 
relative accuracy of baseflow methods is difficult (Lott and 
Stewart 2016). The use of chemical and radioactive tracers 
is the most accurate means of estimating the baseflow con-
tribution in the watershed discharge due to the complexity 
of the base flow characteristics (Chapman 1999). However, 
more qualitative procedures are frequently used because 
chemical and radioactive tracers are expensive and require 
time and complex understanding, and also detailed tracer 
data is rarely available (Galli et al. 2021). Many approaches 
for separating the base flow component from total stream-
flow have been presented.

The most commonly used baseflow separation meth-
ods are analytical methods and mathematical functions or 
algorithms that determine baseflow directly from discharge 
(Eckhardt 2005; Huyck et al. 2005). In analytical filtering 
or smoothing methods, baseflow hydrograph is assumed to 
be a lower amplitude, a lower frequency component of the 
entire streamflow hydrograph. Their benefits include ease of 
automation, repetition of outcomes, and the ability to use the 
whole discharge record (Huyck et al. 2005). But they are fre-
quently used without calibration to the basin or gage-specific 
characteristics other than basin area (Lott and Stewart 2016).

In Kouanda et al. (2018) four Recursive Digital Filter 
(RDF) methods (Chapman, Chapman and Maxwell, Lyne 
and Hollick and Eckhardt) have been examined on a water-
shed in the Sudano-Sahelian zone, West Africa, using the 
daily streamflow of the Mouhoun River. The RDF and Chlo-
ride Mass Balance (CMB) approaches were compared using 
statistical analysis. It was found that among the RDF meth-
ods, the Eckhardt method was successfully calibrated using 
the CMB method and the parameter BFImax of the Eckhardt 
method was adjusted to 0.32 in the study area context. The 
calibrated results demonstrate that the Eckhart approach has 
improved significantly.

The authors of Liu et al. (2019) applied a digital filter 
method to separate baseflow from local daily streamflow 
records for 1983–2014 using different values of filtering 

parameter (β) and filtering times (T) across the small 
watershed of Pengchongjian in Jiangxi Province, southern 
China. They validated the separation results by the base-
flow index (BFI) method and obtain an optimal value of 
β = 0.90 and T = 2. According to their study, the results of 
the baseflow separation study matched with the real field 
situation in the watershed.

The authors of Stadnyk et  al. (2015) compare two 
RDF methods and one hydrologic model in two baseflow 
dominant sub-basins of the Grand River Basin in southern 
Ontario, Canada and they verified the methods by apply-
ing Stable water isotopes (SWIs). They obtain an average 
baseflow contribution of 47% for Eramosa River and 74% 
for Whiteman’s Creek by using the WATFLOOD-based 
model and indicated that the variation is a result of physi-
ographic differences. The study's findings support the use 
of SWIs for regional hydrograph separation, as well as 
indicating that the RDF approach agrees with similar low-
flow observed data.

In Mazvimavi et al. (2004), the authors applied linear 
regression and artificial neural networks to predict the base-
flow index (BFI) from basin characteristics for 52 basins in 
Zimbabwe. The study found that both methods were suitable 
for the prediction of BFI value and they used this value to 
derive flow duration curves with R2 being 0.89–0.99.

Although there are several baseflow separation methods 
in the literature, finding an appropriate method for a given 
watershed and hydro-climatic circumstances remains a diffi-
cult issue (Kouanda et al. 2018). The goal of this research is 
to find the best fit baseflow separation method for the Genale 
Dawa river basin and to combine it with deep learning to 
improve its accuracy and for future use. The Genale Dawa 
river basin is bounded by latitudes of 3°40′N and 7°43′N, 
and longitudes of 37°04′E and 43°28′E, and is located in 
Ethiopia's southern area, bordering Kenya and Somalia. 
It is the country’s third-largest river basin, after the Abay 
and Wabi Shebele river basins, with an estimated area of 
17,6705 km2. The Genale Dawa River Basin is one of Ethio-
pia's most drought-prone areas.

In this study, we used a deep learning model to improve 
baseflow prediction using the calibration techniques 
described by Stewart et al. (2007). This is because deep 
learning improves the regression of the curve from the 
hydrograph by retaining both short and long-term memories 
(Hochreiter and Schmidhuber 1997).

While reviewing the preceding studies, it became clear 
that parameters adjusted for HYSEP and RDF that worked 
on one station would not work on another. In this study, how-
ever, we develop a baseflow prediction model that combines 
analytical methods with a deep learning model. We examine 
three HYSEP and three RDF methods of baseflow separation 
and identify the best method for the Genale Dawa river basin 
in Ethiopia, and then we integrate the selected method with 
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deep learning algorithms. The study's contribution can be 
summarized as follows:

1.	 Calibration and evaluation of six baseflow separation 
methods based on the basin or gage-specific character-
istics.

2.	 Integration of the selected method with a Deep learning 
model to use for watersheds within the study area.

3.	 An extensive experiment is used to present a detailed 
analysis of the integrated model.

Materials and methods

The proposed baseflow prediction model architecture used 
in this study is divided into two phases: training and testing. 
During the training phase, streamflow datasets are obtained 
from the Ministry of Water, Irrigation, and Energy (MoWIE) 
and preprocessed. Following that, we generate baseflow for 
the study area using HYSEP and RDF algorithms and cali-
brate the results (Stadnyk et al. 2015). The best baseflow 
separation method in terms of R2, MAE, BIAS, NSE, and 
RMSE metrics is then chosen from the analytical methods 
and the best method is used to separate the baseflow.

A deep learning model is created to predict baseflow from 
streamflow which, is capable of working on different gaug-
ing stations once it is well trained. The layers of the deep 
learning model and their functions are described below. The 
proposed deep learning model employs input, Long Short-
Term Memory (LSTM), dens, dropout, and output layers. 
The input layer delivers the preprocessed streamflow data to 
the subsequent layers. LSTMs were developed specifically 
to address the problem of long-term dependency. They do 
not have to work hard to remember things for long periods 
of time; it comes naturally to them. Dense layers were then 
used to improve the interconnectedness of neurons specified 
in LSTM layers (Lu et al. 2020).

A dropout layer is added to the model to prevent overfit-
ting during training. Dropout was applied to all layers of the 
network, with the probability of retaining the unit p = (0.9, 
0.75, 0.75, 0.5, 0.5, 0.5) for each layer (going from input 
to convolutional layers to fully connected layers) (Nandini 
et al. 2021). Finally, the output layer produces the respective 
streamflow’s baseflow.

The trained deep learning model is tested for baseflow 
prediction in other watersheds. The proposed model's per-
formance is then tested using streamflow data that were not 
included in the training phase. Figure 1 depicts the overall 
block diagram of the hybrid baseflow predictive model.

Dataset description

Taking into account the length of the record, continuity of 
data and concurrent period of observation, the dataset used 
in this study is the streamflow data of 22 years (1995–2016) 
from the Genale Dawa river basin, which is one of the major 
river basins in Ethiopia. Data of streamflow were collected 
from MoWIE of Ethiopia for four gauging stations shown in 
Fig. 2 and Table 1 below. The dataset contains two parame-
ters: day and streamflow. We used Dawa at Melka Guba over 
a 22-years period to train the proposed deep learning model. 
We used the remaining watersheds to test the performance 
of the designed model. Before use, the streamflow data were 
checked for its consistency.

Baseflow separation is done using different methods by 
considering basin or gage-specific characteristics. Based on 
the quality of streamflow data, geographical location, area 
coverage, and physical characteristics of the study area, the 
Dawa Melka Guba watershed is used as a representative 
watershed. Due to the non-existence of direct measurement 
to confirm baseflow contributions to total streamflow on 
the study area, parameters of different baseflow separation 
methods are calibrated for the selected watershed by consid-
ering mostly dry periods (December–February) of Ethiopia 

Fig. 1   Block diagram of the 
proposed baseflow separation 
model
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as well as the study area. Dry periods were selected based 
on the assumption that during this period there is no or less 
rainfall in the study area and resulting streamflow can be 
assumed as contributed from baseflow (i.e., during this 
period, baseflow is approximately equal to streamflow).

Baseflow separation methods

Three graphical methods (HYSEP) and three RDF meth-
ods (Chapman, Eckhardt Filter, and Lyne and Hollick) are 

selected and evaluated for this study. The three approaches 
in HYSEP (Sloto and Crouse 1996) are fixed interval, slid-
ing interval, and local minimum, which reflect three alter-
native algorithms for drawing lines between hydrograph 
local minima. All three techniques are automated adapta-
tions of prior graphical techniques. They provide a uniform 
response between users and are compatible with previous 
manual methods (Duncan 2019). The time interval in which 
the minima are chosen, N is given by;

where N denotes the number of days after the storm hydro-
graph's peak that surface runoff stops and A is drainage area 
in km2.

The fixed interval technique assigns baseflow to the low-
est discharge during each period separated by a time inter-
val of 2N* days. N* is the odd integer that comes closest 
to the determined value of N. Baseflow is assigned to the 
lowest discharge within a time frame equal to one-half of 
the interval 2N* minus one day using the sliding-interval 
approach. The local-minimum technique compares each day 
to the lowest discharge in half the period minus one day 
[0.5(2N* − 1) days] before and after the day in consideration 
(Gregor 2010).

The most frequent tools for processing and evaluating 
the hydrograph signal are RDFs, which can be used to dis-
tinguish high-frequency signals from low-frequency signals 
by setting a suitable threshold (Gregor 2010). When using 
an RDF to separate the baseflow from the quick flow, quick 
flow signals with a high frequency are removed from the 
hydrograph, while base flow signals with a low frequency 
are extracted (Galli et al. 2021) (Table 2).

BFLOW-LHA consists of forward and backward passes. 
Following the initial forward pass, the separated baseflow 
is subjected to a reverse pass to eliminate any phase dis-
tortion (i.e., to reduce lag), and the process is repeated for 
additional separation (Ladson et al. 2013). For daily data 
from all catchments, a fixed value of k = 0.925 has been pro-
posed (Nathan and McMahon 1990; Murphy et al. 2009). 

N = 0.83A
0.2(1)

Fig. 2   Map of the study area with sub-watersheds and gauging sta-
tions

Table 1   Gauging stations used in this study

Station name Latitude Longitude Drain-
age area 
(km2)

Weib at Sof Umer 6.90 40.83 3792.7
Dawa at Melka Guba 4.87 39.32 19,611
Genale at Halwen 4.43 41.83 54,093
Genale Chenemasa 5.52 39.68 10,574

Table 2   RDFs used for this 
study

qf (i) is the filtered quick flow for the ith sampling instant, qf (i−1) is the filtered quick flow for the previous 
sampling instant to i, q(i) is the original streamflow for the ith sampling instant, q(i−1) is the original stream-
flow for the previous sampling instant to i, qb(i) is calculated baseflow at day i, � is filter parameter, BFImax 
is the maximum baseflow index (constant)

Filter name Equation

Chapman algorithm (Chapman 1999) qf (i) =
3�−1

3−�
qf (i−1) +

2

3−�

(

q(i) − q(i−1)
)

(2)

qb(i) = qi − qf (i) (3)

BFLOW-LHA (Nathan and McMahon July 1990; Lyne 
and Hollick 1979)

qf (i) = �qf (i−1) +
(

q(i) − q(i−1)
)

1+�

2
, qf (i) ≥ 0 (4)

qb(i) = qi − qf (i)

Eckhardt algorithm (Eckhardt 2005)
qb(i) =

(1−BFImax)�qb(i−1)+(1−�)BFImaxq(i)
1−�BFImax

(5)
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The filter's output is restricted so that the separated baseflow 
is not negative or greater than the original streamflow (Lott 
and Stewart 2016). This approach is ideal for analyzing and 
comparing massive data sets from multiple places. By using 
a BFImax Genetic-Algorithm module built into the WHAT1 
(an automated version of the Eckhardt filter method) system, 
the BFImax values and filter parameter of the Eckhardt filter 
equation can be optimized (Lim and Schoenung 2010). A 
detailed review of each RDF method can be found in differ-
ent literatures (Rammal et al. 2018).

In addition to this, calibration guidelines presented by 
Duncan (2019) for master recession curves were adopted by 
modifying the baseflow graph. Because, the methods used 
in this study for baseflow separation like RDF, can serve the 
smoothing purpose. The guidelines are; (1) the separated 
baseflow should show a step up during significant rain, (2) 
the separated baseflow should not lie much below total flow 
in the absence of rain, and (3) the separated baseflow should 
not cling tightly to the total flow in the absence of rain and 
should not be greater than total flow.

Evaluation metrics

In this study, we evaluate the performance of the selected 
methods using R2, MAE, BIAS, NSE, and RMSE metrics. 
The formulas for each metric are shown in Table 3 below.

To select the best baseflow separation method on the 
study area, we conduct an experiment by setting optimal 
parameters which minimize the error stated in Table 3 above. 
Parameter values for all the selected methods are calibrated 
for dry periods of the study area and by adopting the calibra-
tion guidelines presented by Duncan (2019). The optimal 
values obtained for the representative watershed (Dawa at 
Melka Guba) are shown in Table 4 below.

where, N is the number of days after the storm hydro-
graph's peak that surface runoff stops, f and α are filter 

parameters, and BFImax is the maximum base flow index 
value.

Using the value of parameters shown in Table 4, we con-
duct a comparative analysis between the six baseflow separa-
tion methods for the dry period and the result is presented as 
shown in Table 5 below.

Table  5 above indicated that BFLOW-LHA of RDF 
outperforms the remaining methods in terms of R2 (0.98), 
MAE (0.51), BIAS (0.05), NSE (0.97), and RMSE (2.61). 
The evaluation results indicated that BFLOW-LHA of RDF 
represents the physical characteristics of the watershed in 
a reasonable way. Average BFI of the studied methods: 
fixed interval (0.84), sliding interval (0.85), local minimum 
(0.78), Chapman algorithm (0.57), BFLOW-LHA (0.91), 
and Eckhardt algorithm (0.83). BFI value obtained from all 
methods is greater than 50% of the total streamflow, this 
indicates that the study area is baseflow dominant.

Figure 3 below depicts the separated baseflow from total 
streamflow by using all the studied methods for representa-
tive watershed and selected time frame. Whereas, Fig. 4 and 
Fig. 5 show the separated baseflow of the representative 
watershed by using BFLOW-LHA for the entire period and 
selected period, respectively.

After calibration and evaluation, the baseflow separa-
tion method which can best fit the characteristics of the 
study area is selected based on the value of statistical 

Table 3   Evaluation metrics and their formulas

where, bi is baseflow at time i, bm is mean baseflow, Qi is streamflow 
at time i, bm is mean streamflow, and n is the number of observations.

Metrics Formula

R2
(
∑n

i=1
(bi−bm)(Qi−Qm))

2

(
∑n

i=1
(bi−bm))

2

×(
∑n

i=1
(Qi−Qm))

2

MAE 1

n

∑n

i=1
�bi − Qi�

BIAS
∑n

i=1
(Qi−bi)

∑n

i=1
Qi

NSE
1 −

�

∑n

i=1
(Qi−bi)

2

∑n

i=1
(bi−bm)

2

�

RMSE
�

1

n

∑n

i=1
(bi − Qi)

2

�

1/2

Table 4   Parameter values used on each baseflow separation methods

Methods Optimal parameters

Fixed interval N = 6
Sliding interval N = 6
Local minimum N = 6 and f = 0.75
Chapman Alpha, α = 0.90
BFLOW-LHA Alpha, α = 0.91
Eckhardt Alpha, α = 0.99 and 

BFImax = 0.8

Table 5   Comparative analysis of the six baseflow separation methods 
in terms of different evaluation metrics

Methods Evaluation metrics

R2 MAE BIAS NSE RMSE

Graphical (HYSEP) 0.95 1.41 0.14 0.91 7.87
 Fixed interval 0.97 1.21 0.12 0.94 5.46
 Sliding interval 0.91 1.68 0.16 0.83 13.26
 Local minimum 0.95 1.41 0.14 0.91 7.87

RDF
 Chapman 0.94 4.35 0.43 0.23 31.32
 BFLOW-LHA 0.98 0.51 0.05 0.97 2.61
 Eckhardt 0.96 0.86 0.08 0.94 5.60
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analysis. The selected method (BFLOW-LHA) is then 
integrated or coupled with a deep learning algorithm 
to get more accurate results and to adopt for the rest of 
watersheds within the study area.

Experiment

In this section, we investigate the performance of the inte-
grated model which is calibrated to a basin or gage-specific 
characteristics. To evaluate the performance of the model, 
the baseflow of the remaining three watersheds (Weib, 
Genale Halwen, and Genale Chenemasa) is separated by 
using the integrated model. In addition, we compared the 
proposed model's results to that of BFLOW-LHA over the 
three watersheds. All experiments are carried out in a Win-
dows 10 environment on a machine equipped with a core i7 
processor and 16 GB of RAM. The number of epochs was 
used as a predictor in experiments. The details, settings, and 
evaluation methods used in the experiment are listed below.

Deep learning training parameters

We used a grid search to find the best value of the model’s 
parameter when tuning hyper parameters of the deep learn-
ing model on the dataset. Selecting the best model param-
eter results in the best model performance. We used LSTM 
to predict the baseflow point from each streamflow point 
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Fig. 3   A plot of streamflow vs baseflow using six baseflow separation 
methods

Fig. 4   Baseflow separated by 
BFLOW-Lyne and Hollick for 
Dawa Melka Guba watershed

Fig. 5   Sample separated base-
flow for year 2006
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automatically. Table 6 shows the deep learning hyper param-
eters used in this study.

Result and discussion

Using the analytical methods' default filtering parameters or 
constants does not give findings that are well correlated with 
basin characteristics. The results of the HYSEP and RDF 
approaches will be greatly enhanced once they have been 
calibrated by taking into account the physical characteristics 
of the basin. The un-calibrated analytical methods' statisti-
cal match to physical properties is poor due to a lack of 
calibration to basin and gage-specific characteristics. When 
compared to calibrated values, the results of this investiga-
tion show that un-calibrated analytical base flow separation 
approaches do not produce highly significant baseflow val-
ues. Once calibrated, the analytical methods can separate the 
baseflow component of the streamflow reasonably.

The methods' prediction power is greatly improved when 
the best fit baseflow separation method is combined with 
deep learning. After the methods' have been calibrated to 
basin or gage-specific characteristics and integrated with 
deep learning, they can be applied to other watersheds with 
similar characteristics without the need for additional cali-
bration. The hybrid model is easy to use and does not take up 
much time. In this section, the results of the hybrid baseflow 
separation model is presented for the three testing water-
sheds in the study area and the results are compared to base-
flow separated by BFLOW-LHA. Figures 6, 7, 8 depicts the 
streamflow and separated baseflow by proposed model for 
Genale Chenemasa, Genale Halwen, and Weib watersheds 
of the study area, respectively.

Figures 9, 10, 11 show the separated baseflow using 
the BFLOW-LHA and the proposed model fitted to daily 
streamflow data from the three test watersheds. The sepa-
rated baseflow curve in the proposed model steps up quickly 
during significant rain, then smoothly recedes until the 
next significant rain. The baseflow curve between events 
closely matches the expected baseflow behavior at each 
testing watershed, providing a more accurate estimate of 
expected baseflow behavior during events than BFLOW-
LHA. The separated baseflow meets the standard baseflow 

characteristics in all of the testing watersheds (i.e., low flow 
prior to an event is typically all baseflow, the baseflow peak 
falls after the total hydrograph peak, and baseflow rejoins 
the total hydrograph as quick flow ceases) (Duncan 2019).

The current study found a good linear correlation of BFI 
values with other studies that use CMB to calibrate four 
RDF methods in the Sudano-Sahelian Watershed, Burkina 
Faso (Kouanda et al. 2018), and Stable Water Isotopes 

Table 6   Deep learning hyper 
parameters

Hyperparameters Values

Number of neurons 500
Dense layer 128
Dropout 0.5
Activation Softmax
Optimizer Adam
Epoch 50

Fig. 6   Baseflow separation using the proposed model on Genale 
Chenemasa

Fig. 7   Baseflow separation using the proposed model on Genale at 
Halwen

Fig. 8   Baseflow separation using the proposed model on Weib at Sof 
Umer
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(SWIs) for verification of baseflow separations using RDF 
methods in the Grand River basin in southern Ontario, 
Canada (Stadnyk et al. 2015). This study's average reces-
sion constant value correlates with the value obtained by 
Duncan (2019) for daily flow data (i.e., 0.91–0.98), and 
the baseflow curves obtained match the results of various 
studies (Aboelnour et al. 2020; Lott and Stewart 2016; 

Stewart et al. 2007; Eckhardt 2005; Mazvimavi et al. 2004; 
Ladson et al. 2013).

Field measurement data is required to evaluate the per-
formance of the proposed model. However, because those 
data (chemical and radioactive tracers) are unavailable, the 
separated baseflow is compared to theoretical baseflow curve 
behaviors. Furthermore, if the proposed model's parameters 
are not optimized for basin or catchment characteristics, it 
may result in poor performance in some catchments.

Conclusion

An attempt was made in this study to introduce a new base-
flow prediction model by combining an analytical method 
with deep learning. The adjustment of parameters in the 
existing baseflow separation methods varied from watershed 
to watershed. Instead of adjusting parameters for different 
watersheds each time, train the model once and use it to 
predict baseflow wherever it is needed. The dataset used 
to test and evaluate the proposed model's performance was 
obtained from MoWIE. The model was trained using stream-
flow and baseflow separated from the Dawa Melka Guba 
watershed using the BFLOW-LHA and evaluated on base-
flow prediction for the basin's three watersheds: Weib Sof 
Umer, Genale Halwen, and Genale Chenemasa. The hybrid 
model presented here aims to preserve as much physical 
applicability as feasible in the separated components of 
streamflow by calibrating parameters to gage-specific or 
basin characteristics. The experimental results on the three 
watersheds show that the proposed model outperforms the 
BFLOW-LHA. The model is straightforward and intui-
tively satisfying in its description of baseflow in the study 
area. The proposed model can be used as an efficient model 
for baseflow prediction. As a result, the proposed hybrid 
baseflow prediction model is suitable for use in a variety 
of applications where baseflow separation is critical, such 
as overland flow determination, water resources planning 
and management, and construction of hydraulic structures. 
However, the suggested model's performance will be tested 
on larger datasets and compared to chemical and radioactive 
tracers (where data is available) in future research.
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