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Wireless networks include a set of nodes which are connected to one another via wireless links for communication purposes.
Wireless sensor networks (WSN) are a type of wireless network, which utilizes sensor nodes to collect and communicate data.
Node localization is a challenging problem in WSN which intends to determine the geographical coordinates of the sensors in
WSN. It can be considered an optimization problem and can be addressed via metaheuristic algorithms. This study introduces
an elite oppositional farmland fertility optimization-based node localization method for radio communication networks, called
EOFFO-NLWN technique. It is the goal of the proposed EOFFO-NLWN technique to locate unknown nodes in the network
by using anchor nodes as a starting point. As a result of merging the principles of elite oppositional-based learning (EOBL)
and the agricultural fertility optimization algorithm (FFO), we have developed the EOFFO-NLWN approach, which is
described in detail below. The EOBL concept makes it easier to populate the FFO algorithm’s population initialization, which
results in an increase in the exploration rate. Various BNs and CRs were tested, and the findings revealed that the EOFFO-
NLWN technique outperformed all other known techniques in all cases. A comprehensive experimental result analysis of the
EOFFO-NLWN technique is performed under several measures, and the results described the sovereignty of the EOFFO-
NLWN method associated to existing techniques.

1. Introduction

As an emergent model of computing and networking, wire-
less sensor network (WSN) has been applicable and relevant
in different domains like military, medicine, climate fore-
casting, surveillance [1], environmental control, and so on.
Reliable advances and development in networks have con-
siderably enabled and extended wide-ranging applications
of WSN. In recent times, WSN has been incorporated with
another concept includes internet of things (IoT) [2]. Wire-
less communications and electronics have advanced signifi-

cantly in recent years, enabling the expansion of
multifunctional devices that are low in cost and power
ingesting, and that can communicate over relatively short
distances. Sensors that are inexpensive, intelligent, wirelessly
interacted, and widely scattered open the door to possibili-
ties for monitoring and regulating homes, communities,
and the natural environment that were previously unimagin-
able. Furthermore, networked sensors provide a plethora of
defence applications, enabling for the development of new
capabilities in reconnaissance, surveillance, and a variety of
other tactical applications. A feature that is highly desirable
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in wireless sensor networks is their ability to self-locate.
Wireless sensor networks are utilized in a variety of environ-
mental applications to perform a variety of activities, includ-
ing environmental monitoring, disaster response, target
tracking, and defences. In military applications, such as bat-
tlefield surveillance, wireless sensor networks were devel-
oped and are now used in a wide range of industrial and
civilian applications, including industrial process monitor-
ing and control, machine health monitoring, environment
and habitat monitoring, healthcare applications, home auto-
mation, and traffic control. Wireless sensor networks are
also used in military applications, such as battlefield surveil-
lance. It is critical to build efficient localization solutions
since the vast majority of applications rely on proper local-
ization, i.e., computing their positions in a particular coordi-
nate system. A WSN is a network substructure that contains
massive amount of diminutive, minuscule, low-cost autono-
mous devices represented as sensors that detect and monitor
the environments for compiling information [3]. The infor-
mation gathered from the framework is later transmitted to
the sink nodes, a destination whereby information is redir-
ected or treated locally to another network for dissimilar
usages [4]. Because of the node communication, accessible
deployment, self-organization, and data transfer, WSN has
several usage and advances, but they confront few problems
[5]. Figure 1 depicts the structure of WSN.

There are several problems in WSN execution pro-
cesses, like coverage, node localization (NL), data routing
issues, energy consumption of sensor nodes, and so on
[6]. Data routing issues: even though a directing procedure
should be energy-efficient, load-balancing, and fault-
tolerant in addition to being scalable and providing a high
level of safety, this is, to put it mildly, a difficult challenge
to accomplish. Sensor nodes make use of energy in the
following ways: the fundamental role of a sensor node as
a microelectronic device is to detect events, do data pro-
cessing on the fly and locally, and transmit and receive
data. Sensor nodes are made up of four parts: a power
supply unit, a sensing unit, a computing/processing unit,
and an interactive unit. The sensing node is typically pow-
ered by a limited-capacity, nonrechargeable battery in the
vast majority of application scenarios. All other compo-
nents, with the exception of the power unit, will require
energy in order to perform their functions. Node localiza-
tion (NL): nodes are located in the following locations:
because of the use of localization techniques, the deploy-
ment of WSNs is quite inexpensive. An anchor or beacon
node that is aware of its location is used by the vast
majority of localization algorithms. Using the position data
provided by the anchor node or beacon node, the other
nodes can identify their own location and that of their
neighbours. In spite of each challenge and issue, the more
important one is defining the position of sensors. The
technique of NL could track and locate nodes; thus, the
data monitoring is very beneficial that is information col-
lected at sink node would be valueless to the client with
no localizing information of the node in the sensor region
[7]. The localization can be described as location of the
unknown sensors named as target node (TN) with the

known location of the sensors named as anchor node
(AN) depending on the measurements including period
of influx, period change of influx, maximal likelihood,
and angle of arrival, triangulation [8]. The localization
problem of WSN can be addressed by employing global
positioning system (GPS) with sensors; however, this is
not favourable as a consequence of cost, size, and energy
problems. It even does not function appropriately under-
water and indoor [9]. WSNs use localization to locate sen-
sor nodes. Installation GPS on each WSN node is pricey,
because GPS does not perform well inside. In a dense net-
work, manually referencing each sensor node’s position is
impractical. In this situation, the sensor nodes must self-
locate without GPS or manual configuration. Imple-
menting WSN with localisation saves money. An anchor
or beacon node understands its present location. Conse-
quently, better and efficient alternative is needed for local-
izing the sensors. Different non-GPS-based localizing
approaches are utilized that are divided into range-based
and range-free models [10]. To control the present posi-
tion of instrument nodes in wireless sensor networks
(WSNs), localization is a technique that is widely utilized.
An indoor WSN can include hundreds or even thousands
of nodes, making the connection of GPS on each device
node excessively expensive. Additionally, GPS will not
offer precise location findings in an indoor environment.
Node localization is extremely important in order to locate
and determine the location of sensor nodes with the use of
a particular procedure. As previously stated, localization is
the process of decisive the geographic position of nodes
[9], because data and information are rendered meaning-
less if the nodes do not know where they are in relation
to one another. Several metaheuristic approaches have
been working for solving the localization problematic in
WSN that dramatically minimizes the localization fault.

This study introduces an elite oppositional farmland fer-
tility optimization-based node localization technique for
radio systems, called EOFFO-NLWN technique. The pro-
posed EOFFO-NLWN technique mainly intends for classify-
ing the position of unidentified bulges from the network
using ANs. Besides, the EOFFO-NLWN technique is derived
by the combination of the concepts of elite oppositional
based learning (EOBL) and farmland fertility optimization
(FFO) algorithm. The EOBL concept assists in the popula-
tion initialization of the FFO algorithm and thereby
improves the exploration rate. To promote population diver-
sity, the first step is to use elite opposite-based learning
(EOBL). The second enhancement is the integration of three
innovative local search procedures to avoid becoming caught
in local optima. This is the fundamental goal of EOBL: to
turn existing search results into more relevant ones.
Through the investigation of solutions in both the current
search space and the altered search space, EOBL can boost
the possibility of identifying explanations that are closer to
the global optimum than they would otherwise be. The pro-
cedure delivers chaotic disruption into the population at the
same time as it works to increase population variety. A com-
prehensive experimental result analysis of the EOFFO-
NLWN technique is performed under several measures.
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1.1. Related Works. According to Phoemphon and col-
leagues [11], leveraging AN from a nearby group to approx-
imation the locations of unidentified nodes improves
localization precision by a factor of ten. It is also possible
to execute PSO with increased FF in order to predict the
positions of unknown nodes. The effectiveness of localisa-
tion was evaluated in depth in environments that were prone
to obstacles. An algorithm for node placement that relies on
the Voronoi diagram and SVM was described in [12] for use
in this scenario. The fundamental goal of the technique,
which makes use of a Voronoi diagram and an AN retrieved
from the localization region, is to initially segment the dis-
trict into a great number of parts. Once all regions had been
utilized to place the TN in, the SVM was used to determine
the most optimal precise location for the TN’s primary loca-
tion. [13] proposes a network-level strategy for WSN that is
based on virtual partition and distance correction (VP-DC)
techniques.

The Monte Carlo node placement technique developed
by Song et al. [14] is based on the enhanced QUASI-Affine
Transformation Evolutionary (QUATRE) algorithm and is
described in detail below. After selecting the best general
nodes within one hop of unidentified nodes as provisional
ANs, and using the temporary AN and AN as orientation
nodes to construct a more accurate sampling region, an
improved QUATRE-optimized technique was used to obtain
the evaluated position of unidentified nodes from the sam-
pling area. QUATRE-optimized techniques were also used
to obtain the evaluated position of unknown nodes from
the sampling region. By employing the GSO combined local-
ization method, Yu et al. [15] develop novel localization
algorithms for wireless sensor networks. The primary func-
tion was derived analytically using a 3D localization
approach and the Pareto distance as a starting point. The
glow-worm sets were created by dividing the GSO popula-
tion into their upgrade locations in order to improve the
precision with which the swarms might be located.

In device systems, Shayanfar et al. [16] suggesed that the
localization can be labelled as the procedure of decisive the

location of a sensor node. Any wireless sensor network’s
localization mechanism must be highly accurate. Localiza-
tion is the procedure of determining the sensor node’s geo-
metrical location inside the network. The localization
challenge entails decisive the position and coordination of
wireless sensor nodes. Localization is a problem that has
been explored for many years when it comes to wireless sen-
sor nodes. There are numerous alternatives, which are eval-
uated based on their cost, size, and energy usage.
Localization is critical when the precise location of some
permanent or mobile equipment is unknown. One example
is the monitoring of humidity and temperature in woods
and/or fields, where hundreds of sensors are dropped from
a plane, with the operator having little or no control over
the precise location of each node.

The remaining sections of this proposed work are struc-
tured as follows. In Section 2, fundamental measurement
techniques for localization in WSNs are briefly presented
along with their usual problems and obstacles. Section 3 dis-
cusses various localization algorithms and their comparative
analysis. Section discusses numerous localization evaluation
criteria. Then, in Section 4, we discuss perspectives and
issues in range-free localization methods in conclusion.

2. The Proposed Model

This study has developed an effective EOFFO-NLWN tech-
nique to recognize the position of unidentified bulges in
the network using ANs. The EOFFO-NLWN technique is
majorly derived by the combination of the concepts of EOBL
and FFO algorithm. The EOBL concept assists in the popu-
lation initialization of the FFO algorithm and thereby
improves the exploration rate.

2.1. Design of EOFFO Algorithm.Metaheuristics are a type of
model-free technique to resolve different kinds of optimized
problems which are existing employed in a wide range of
applications [16]. Elite Oppositional Farmland Fertility
Optimization (EOFFO), the optimization strategy for
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Sensing field

Gateway

User

Internet

Figure 1: WSN architecture.
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MOIFF is based on a novel bioinspired meta experiential
technique called Farmland Fertility algorithm (FF), which
was proposed in 2018. Since FF has been shown to outper-
form a variety of well-known metaheuristic approaches
(including GA, DE, PSO, and ABC) in relations of meeting
accurateness, constancy, and speed. Metaheuristics are a
kind of modeless technique used to solve various types of
optimal problems in a wide variety of applications. The
FFO technique contains 6 important parts that are described
here. During initiation procedure, the quantity of sections
and the possible solution to them (n) under the farmland
are determined. For that purpose, the population (N) of
technique was modelled as follows:

N × n, ð1Þ

where k i refers the positive digit from the range of 1 and N ,
and n defines the integer number. The rate to k during this
learning was chosen 2 that is attained by trial and error.
For making the primary individuals from the possible range,
the subsequent formula was adapted:

Xij = Lj + Uj − Lj

� �
× δ, ð2Þ

where Lj and Uj represent the lower and upper limits of
dimension j and represent an arbitrary rate between zero
and one. The farmland in the technique was divided into
three portions of local memory (A, B, and C) and global
memory, with section A containing the lowest grade soil.

The estimation stage directs the farmland decision vari-
able from the section. To evaluate the rate purpose worth
to the choice variable. Also, the excellence of soil was
attained by the subsequent:

Ss = X ajð Þ, a = n∗ s − 1ð Þ: n × ss = 1,⋯, k½ �, j = 1, 2, 3, 4: ð3Þ

During memory update stage, the resident as well as
international memories were upgraded. An optimum
solution of farmlands is kept from the limited memory,
and explanations among them are regarded as total
memory. For determining the amount of optimum local
as well as total recollections, the subsequent formulas were
utilized [17]:

Mlocal = round t × nð Þ, ð4Þ

MGIobaI = round t ×Nð Þ, ð5Þ

where t ∈ ½O:1, 1�, and Mlocal and MGlobal define the
amount of saving solutions from local as well as global
memory correspondingly. To define the quality of sections
and save an optimum one from the local memory. Also,
optimum solutions are kept from the global memory. For
increasing the worse-case outcomes, it can be upgraded
by relating them with optimum-case solution of global
memory. At last, the variable of novel solution is upgraded
as

Xnew = h × Xij − XMGlobaI
� �

+ Xij, ð6Þ

where XMGlobal portrays an arbitrary value with global
solutions, Xij refers the worse case that is chosen to
upgrade, and h defines the decimal number as follows:

h = α × r1, ð7Þ

Table 1: ASE analysis of EOFFO-NLWN model with distinct BNs.

Average localization error (%)
No. of beacon nodes DV-Hop WND-DV-Hop MGDV-Hop VP-DC EOFFO-NLWN

5 61.39 42.72 65.15 14.49 6.95

10 61.35 33.31 54.94 12.93 6.70

15 51.60 30.59 24.11 11.16 5.93

20 60.32 34.83 21.83 10.71 5.98

25 56.41 27.82 22.32 8.79 5.99

30 53.64 26.80 19.69 7.71 4.27

35 45.47 24.36 12.95 6.70 3.00
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Figure 2: ASE analysis of EOFFO-NLWNmodel with distinct BNs.
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where α represents the constant value from the range of
zero and one, and r1 implies the arbitrary value from
the range of -1 and 1. For updating another solution,

Xnew = h × Xij − XMGlobal
� �

+ Xij, ð8Þ

h = β × r2, ð9Þ
where r2 implies the arbitrary value from the range of zero
and one, and β defines the constants from the range of
zero and one, that is assumed as the start of farmland
fertilities.

After determining optimum local solutions ðLbestÞ, the
farmland optimum soil combination was chosen by agricul-
turalist. But, an optimum global solution ðGbestÞ is obtained
for combining by the farmland for developing the quality of
soils. This stage was mathematically processed by the subse-
quent:

H =
Xnew = Xij + ω × Xij −Gbest bð Þ� �

,Q > rand,

Xnew = Xij + r3 × Xij − Gbest bð Þ� �
, 0:w:,

(
ð10Þ

where Q demonstrates the optimum worldwide mixture to
the solution and is a continuous from the choice of zero
and one ðBestGlobalÞ,r3 defines the random standards from
the range of zero and one, and ω implies the limit of country
fecundities which is determined at starting time and is
expressed as follows:

ω = ω × Rν, 0 < Rν < 1: ð11Þ

Estimate the feasible solution to search spaces. In this
procedure, when the end condition is attained, this tech-
nique ends, else, it can be continuous still attaining optimum
solutions. EOBL is a novel approach used to enhance the
performance of metaheuristics [18]. Let elite individual in
present population is Xe = ðxe,1, xe,2,⋯, xe,DÞ, for an individ-
ual Xi = ðxi,1, xi,2,⋯, xi,DÞ, the elite opposition solution ~Xi
= ð~xi,1, ~xi,2,⋯, ~xi,DÞ of Xi can be represented using the fol-
lowing equation:

�x = η ∗ daj + dbj
� �

− xe,j, ð12Þ

where i = 1, 2,⋯,NP, NP denotes population size, j = 1, 2,
⋯,D, η ∈UðO, 1Þ and η implies generalized coefficient, and

½daj, dbj� is an adaptive limit of jth dimension searching area
and can be attained as follows.

daj =min xi,j
� �

, ð13Þ

dbj =max xi,j
� �

: ð14Þ
The static margin is nonconducive in storing the search-

ing experience, and therefore, adaptive bound is used for
replacing the fixed bounds in preserving the searching expe-
rience for making narrower opposition solutions. Besides,
when operator of dynamic bound creates ~xi,j jumps out of
½daj, dbj�, Eq. (15) is applied for resetting ~xi,j:

~xi,j = rand daj, dbj
� �

: ð15Þ

The EOBL produces opposition population based on
elite individuals and assesses the present as well as elite pop-
ulation concurrently. Also, it completely utilizes the features
of elite individuals to comprise meaningful searching data
compared to normal individuals. Besides, the EOBL helps

Table 2: LNT analysis of EOFFO-NLWN model with distinct BNs.

Localization time (min)
No. of beacon nodes DV-Hop WND-DV-Hop MGDV-Hop VP-DC EOFFO-NLWN

5 0.344 0.755 2.703 0.207 0.169

10 0.329 0.709 2.635 0.215 0.146

15 0.306 0.656 2.406 0.268 0.169

20 0.336 0.656 2.163 0.306 0.169

25 0.374 0.648 2.315 0.306 0.207

30 0.367 0.633 2.239 0.329 0.215

35 0.367 0.648 2.087 0.344 0.192
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Figure 3: LNT analysis of EOFFO-NLWN model with distinct
BNs.
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to boost the global exploration abilities of the FFO algo-
rithm. The recent application of EOBL is ∗OBL is mostly
used in bioinformatics and medicine, specifically for illness
detection and forecast in particles and proteins, as well as
for drug discovery and development. The core OBL concept
and the quasi-inverse are the two OBL schemes that are
most frequently used in a wide range of request industries.
It begins with a thorough examination of the basic OBL idea
before going on to describe the many OBL schemes and pre-
cise propositions that are employed in machine learning
methods. It then goes into detail on the adjustments to
OBL’s usage in reinforcement learning, artificial neural net-
works, fuzzy systems, and variant optimization techniques,
among other requests. It provides a succinct overview of
the majority of OBL’s diverse range of applications. A com-
prehensive overview of OBL investigates from a variety of
angles. In some cases, exact proofs and theoretical defini-
tions for investigating and utilising the benefits of OBL are
presented, while other emphasis on special growths for var-
ious schemes of incorporating OBL into machine learning
methods is presented, and still other attention on the
numerous applications of OBL in several science and engi-
neering grounds, such as power schemes, pattern credit
and image processing (including facial recognition and
image processing), documentation problems (including bio-
informatics), and drug, among other field.

2.2. Steps Involved in EOFFO-NLWN Technique. The
EOFFO-NLWN approach includes the subsequent phases
for localizing the sensor from WSN.

Place N AN and M TN arbitrarily in the device part.
Each AN was place aware and assist to recognize the resi-
dence of additional node [19]. Each target and ANs include
communication range R.

(1) Distance among the AN and TN are evaluated and
altered with preservative Gaussian noise. The TN
controls the distance as d̂i = di + ni whereas di repre-
sent to the actual distance, i.e., computed among the
place of TN ðx, yÞ and place of beacon ðxi, yiÞ:

di =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x − xið Þ2 + y − yið Þ2

q
: ð16Þ

The variable ni controls the noise that touches the
assessed distance in di ± di ðPn/100Þ whereas Pn denotes
the sound relation from the predictable distance.

(2) The desirable node is named a localization node
when it has three ANs within the transmission
radius of TNs [20–24]

(3) In case of localized nodes, the EOFFO-NLWN tech-
nique was implemented separately to recognize the
place of TNs. The EOFFO-NLWN method is per-
formed by applying the centroid of AN inside a
transmission radius:

xc, ycð Þ = 1
N
〠
N

i=1
xi,

1
N
〠
N

i=1
yi

 !
: ð17Þ

In which N indicates the complete quantity of ANs
within the transmission series of restricting TNs [21, 25–28].
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Figure 4: ALE analysis of EOFFO-NLWN model with distinct
BNs.

Table 3: ALE analysis of EOFFO-NLWN model with distinct BNs.

Average localization error (%)
Communication radius (m) DV-Hop WND-DV-Hop MGDV-Hop VP-DC EOFFO-NLWN

5 64.39 46.96 23.38 13.89 5.18

10 62.08 36.19 26.45 12.87 7.74

15 59.01 33.12 21.33 9.79 6.20

20 53.88 29.27 24.15 10.56 5.95

25 51.83 27.22 21.33 9.28 4.92

30 45.68 25.43 22.61 8.25 3.89

35 46.96 25.68 17.22 8.00 2.87

6 Wireless Communications and Mobile Computing



(4) The EOFFO-NLWN approach is suitable to identify
the ðx, yÞ coordinate as TN which reduces the local-
izing fault. The primitives implemented in localiza-
tion issue are a mean four-sided detachment
between the anchor and TNs:

f x, yð Þ = 1
N

〠
N

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x − xið Þ2 + y − yið Þ2

q
− d̂

 !2

: ð18Þ

Whereas N ≥ 3 represents the quantity of ANs confiden-
tial a broadcasting radius of TNs.

(5) Once the highest quantity of repetitions is accom-
plished, afterward, the optimal location coordination
ðx, yÞ is determined by EOFFO-NLWN model
[29–31]

A whole localizing error can be described after that com-
puting the localizing TN NL. It is estimated as a mean four-
sided of coldness in node ðXi, YiÞ coordinate from the real
node ðxi, yiÞ coordinate:

E1 =
1
N1

〠
N

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − Xið Þ2 + yi − Yið Þ2

q
: ð19Þ

(6) Steps 2 to 6 are iterated till the TN is localized. The
localized method is depending on the high mistake
contained E1, and quantity of unlocalized bulges
NNL

is strongminded by NNL
=M −NL. The least

scores of E1 and NNL
show an effective restricted

method [32–34]

3. Performance Validation

The localization result analysis of the EOFFO-NLWN model
takes place in this section. Table 1 and Figure 2 demonstrate
the comparative ALE examination of the EOFFO-NLWN
model with other approaches below distinct beacon bulges
(BNs). The results portrayed that the EOFFO-NLWN model
has attained reduced ALE values under all BNs. For instance,
with 5 BNs, the EOFFO-NLWN model has obtained lower
ALE of 6.95% whereas the DV-Hop, WND-DV-Hop,

MGDV-Hop, and VP-DC techniques have attained higher
ALE of 61.39%, 42.72%, 65.15%, and 14.49%, respectively.
Simultaneously, with 20 BNs, the EOFFO-NLWN model
has provided minimal ALE of 5.98% whereas the DV-Hop,
WND-DV-Hop, MGDV-Hop, and VP-DC techniques have
resulted to maximum ALE of 60.32%, 34.83%, 21.83%, and
10.71%, respectively. Concurrently, with 35 BNs, the
EOFFO-NLWN model has gained least ALE of 3% whereas
the DV-Hop, WND-DV-Hop, MGDV-Hop, and VP-DC
techniques have accomplished increased ALE of 45.47%,
24.36%, 12.95%, and 6.70%, respectively.

Table 2 and Figure 3 depict the proportional LNT exam-
ination of the EOFFO-NLWN model with other methods
under different BNs. The results portrayed that the
EOFFO-NLWN technique has reached lower LNT values
under all BNs. For instance, with 5 BNs, the EOFFO-
NLWN technique has obtained lesser LNT of 0.169min
whereas the DV-Hop, WND-DV-Hop, MGDV-Hop, and
VP-DC techniques have attained superior LNT of
0.344min, 0.755min, 2.703min, and 0.207min correspond-
ingly. Concurrently, with 20 BNs, the EOFFO-NLWN meth-
odology has provided minimal LNT of 0.169min whereas
the DV-Hop, WND-DV-Hop, MGDV-Hop, and VP-DC
techniques have resulted in increased LNT of 0.336min,
0.656min, 2.163min, and 0.306min correspondingly. Con-
currently, with 35 BNs, the EOFFO-NLWN system has
gained least LNT of 0.192min but the DV-Hop, WND-
DV-Hop, MGDV-Hop, and VP-DC algorithms have accom-
plished maximum LNT of 0.367min, 0.648min, 2.087min,
and 0.344min correspondingly.

Table 3 and Figure 4 demonstrate the comparative ALE
examination of the EOFFO-NLWN model with other
approaches below distinct communication radius (CR).
The results portrayed that the EOFFO-NLWN model has
reached lesser ALE values under all CR. For instance, with
5m CR, the EOFFO-NLWN methodology has obtained
lesser ALE of 5.18min while the DV-Hop, WND-DV-Hop,
MGDV-Hop, and VP-DC methodologies have attained
superior ALE of 64.39min, 46.96min, 23.38min, and
13.89min correspondingly. Concurrently, with 20m CR,
the EOFFO-NLWN system has provided minimum ALE of
5.95min whereas the DV-Hop, WND-DV-Hop, MGDV-
Hop, and VP-DC techniques have resulted in increased
ALE of 53.88min, 29.27min, 24.15min, and 10.56min,
respectively. Concurrently, with 35m CR, the EOFFO-
NLWN technique has reached least ALE of 2.87min whereas

Table 4: LNT analysis of EOFFO-NLWN model with distinct BNs.

Localization time (min)
Communication radius (m) DV-Hop WND-DV-Hop MGDV-Hop VP-DC EOFFO-NLWN

5 0.598 1.083 2.260 0.337 0.245

10 0.499 0.806 2.214 0.337 0.260

15 0.391 0.729 2.191 0.322 0.229

20 0.391 0.668 2.175 0.329 0.206

25 0.383 0.583 2.144 0.299 0.206

30 0.337 0.560 2.152 0.291 0.206

35 0.329 0.491 2.191 0.260 0.183
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the DV-Hop, WND-DV-Hop, MGDV-Hop, and VP-DC
methodologies have accomplished higher ALE of
46.96min, 25.68min, 17.225min, and 8min
correspondingly.

Table 4 and Figure 5 demonstrate the comparative LNT
examination of the EOFFO-NLWN method with other
methods below separate CR. The consequences portrayed
that the EOFFO-NLWN method has attained reduced LNT
values under all BNs. For instance, with 5m CR, the
EOFFO-NLWN methodology has reached lesser LNT of
0.245min whereas the DV-Hop, WND-DV-Hop, MGDV-
Hop, and VP-DC techniques have reached increased LNT
of 0.598min, 1.0835min, 2.260min, and 0.337min corre-
spondingly. Simultaneously, with 20m CR, the EOFFO-
NLWN technique has offered lesser LNT of 0.206min
whereas the DV-Hop, WND-DV-Hop, MGDV-Hop, and
VP-DC systems have resulted in maximal LNT of
0.391min, 0.668min, 2.175min, and 0.329min correspond-
ingly. At last, with 35m CR, the EOFFO-NLWN system has
gained least LNT of 0.183min whereas the DV-Hop, WND-
DV-Hop, MGDV-Hop, and VP-DC algorithms have accom-
plished increased LNT of 0.329min, 0.197min, 2.191min,
and 0.260min correspondingly.

As previously stated, the EOFFO-NLWN method out-
done all other currently available methods for a variety of
BNs and CRs, as proven by the findings presented here.

3.1. Limitations of Proposed Systems. Elite oppositional farm-
land fertility optimization-based node localization method
for radio communication networks (EOFFO-NLWN) mea-
suring the sending time of the transmitting signal and the
receiving time of the signals are delayed. Increasing sensor
density presents several difficulties for localisation. One such
difficulty is information loss due to wireless signal collision.

4. Conclusion

This study has developed an effective EOFFO-NLWN
approach to recognize the position of unidentified bulges
in the network using ANs. The EOFFO-NLWN technique
is majorly derived by the combination of the concepts of
EOBL and FFO algorithm. The EOBL concept assists in
the population initialization of the FFO algorithm and
thereby improves the exploration rate. A comprehensive
experimental results examination of the EOFFO-NLWN
method is achieved under several measures, and the conse-
quences described the supremacy of the EOFFO-NLWN
procedure associated to existing methods. It is proposed in
this study that the EOFFO-NLWN technique, which is an
elite oppositional farmland fertility optimization-based
bulge localization method for wireless networks, be used in
future research. It was proved through the experimental
results that the EOFFO-NLWN strategy outperforms all
other known methods when exposed to various BN and
CR conditions. Therefore, the EOFFO-NLWN method can
be practical as an actual instrument for restricting nodes in
WSN. As a portion of upcoming possibility, the network
presentation can be increased by the usage of hybrid
metaheuristics-based clustering schemes. A new hybrid opti-
mization technique for finding the ideal CH while taking
into account all aspects such as latency, distance, and energy
in order to enhance the network’s lifetime. Due to a variety
of complex circumstances, effective data transfer among
nodes is nearly impossible. Clustering is a well-known tech-
nique for improving the efficiency of data transmission. The
clustering model separates the sensor nodes into several
clusters.
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