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Abstract

CdTe is a wide band gap semiconductor belonging to group II-VI. It is commonly

used in light emitting diodes (LED) and many optoelectronic devices fabrications. It is

obvious that many body problems are complex and a piece challenging to solve. Due to

this the state of motion cannot be solved analytically for systems in which three or more

masses are interact. To solve this many body problems, the Density Functional Theory

is preferred as an accurate and reliable tool. The first principle calculation based on

density functional theory (DFT) was employed to investigate the electronic and struc-

tural properties of hexagonal(wurtzite) and zincblende CdTe using quantum ESPRESSO

package. A number of convergence test were performed to establish the optimal value

of various parameters in the numerical calculations. Firstly, the total minimum energy

of CdTe per atom was calculated as a function of cutoff energy and k-points sampling.

Secondly, the optimal lattice constants of CdTe was calculated for a series of possible

parameters using the results obtained from energy convergence test (i.e, for wurtzite

110 Ry and 7×7×7 k-points, for zincblende 110 Ry and 4×4×4 k-points). Moreover the

band structure and density of states of CdTe have been calculated based on the frame

work of density functional theory. The results of calculations show that the total min-

imum energy of CdTe per atom is monotonically decreasing with increasing cutoff en-

ergy due to variational principle. However, this trend can not be predicted from increas-

ing the k-point sampling. The computational value of the equilibrium lattice constant

for wurtzite was A = 4.684 Å, C = 7.684 Å and for zincblende was 6.60 Å. The obtained

result was over estimated as compared to the experimental result.

The computed values of band structure and density of states of wurtzite Cadmium Tel-

luride was 0.595 eV and 0.58 eV respectively. The computed values of band structure

and density of states of zincblende Cadmium Telluride was 0.605 eV and 0.79 eV re-

spectively.

keyword: Cadmium Telluride, density functional theory, pseudopotentials, plane wave

self-consistent field and Quantum Espresso Package.
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Introduction

1.1 General Background

Semiconductors are classes of materials that are playing significant role in the area of

optoelectronic devices fabrications. For the past several years, the binary compounds

have been studied extensively to find a new absorber material for solar cells. In addi-

tion, lots of research efforts have been devised for the development of low cost and high

efficiency thin film solar cells. In this aspect, group II–VI semiconductors are largely

studied because of their potential use in photoconductive devices and solar cells. As

a group II-VI semiconductor material, CdTe has a direct band gap of 1.5 eV at room

temperature [1, 2], high average atomic number (50), good transport property, high re-

sistivity, and the type of conductivity Cadmium Telluride is a crystalline compound

formed from Cadmium and Tellurium. Because of its optimum energy band gap (1.5

eV) at room temperature and high absorption coefficient (> 10+5cm−1) in the visible

region, CdTe can act as a good candidate for solar energy conversion [3, 4].

It is sandwiched with Cadmium Sulfide to form a p-n junction photovoltaic solar

cell. It has very low solubility in water and is etched by many acids such as hydrobromic

and hydrochloric acids. It is commercially available as powder or crystals. It can also be

made into nanocrystals.

As a consequence of the direct band gap, the absorption edge of CdTe is very sharp and

more than 90� of the incident light is absorbed in a few micrometers, while a 20µm

thick layer of Si is required to absorb the similar radiation intensity [5].

The state of motion of particles cannot be solved analytically for systems in which three

or more distinct masses interact. To solve this problem, the density functional theory

was appeared in different principles or approaches. First principle pseudo potential

calculations have been performed on CdTe in the wurtzite and zincblende structures.

The mixed basis approach is employed due to the localized nature of valence charge

3



1.2 Statement of the Problem 4

density in this material. Over the past decade, first principles calculations based on the

DFT with local density approximation (LDA) have been developed and made the ac-

curate prediction of ground state properties of solids available. DFT has gained great

success particularly in condensed matter electronic structure calculation. One rea-

son for this is that calculation can be done for large systems at modest computational

costs [6, 14]. There is no doubt that DFT is exact in principle, however DFT relies on ap-

proximation to the exchange correlation functional in practice. Although DFT has been

to be very careful, still it is encountered with some deficiencies. One common example

in surface physics is that DFT with LDA and GGA predict wrong adsorption site for CO

on Pt(111) and other close-packed metal surfaces [7, 8, 9].

The convergence of total minimum energy per atom was calculated with respect to cut-

off energy and k-point samplings. The band structure, density of states (DOS) and lat-

tice constants also have been calculated using DFT.

In general the focus of this thesis was, determining electronic and structural properties

of CdTe with the help of first principle calculation using Quantum Espresso package.

1.2 Statement of the Problem

It is obvious that many body problems are complex and a piece challenging to solve.

Due to this the state of motion cannot be solved analytically for systems in which three

or more masses are interact. To solve this many body problems, the Density Func-

tional Theory is preferred as an accurate and reliable tool. The primary reason of DFT is

that any property of the interacting structures can be considered as a functional of the

ground state density n0(r). The semiconductor material, Cadmium Telluride (CdTe)

plays significant role in the production of light emitting diodes (LEDs) and different

optoelectronic devices. It is also promising material for new generations to operate

many microelectronic components in the future. But its electronic and structural prop-

erties on density functional theory are not well studied. So it is aimed to investigate

the electronic and structural properties of CdTe with the help of DFT using Quantum

ESPRESSO package.
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1.3 Research questions

The following quations have been answered in this study:

1. What is the total minimum energy of CdTe per atom with respect to cut-off energy?

2. What is the total minimum energy of CdTe per atom with respect to K-point sam-

pling?

3. What is the equilibrium lattice constant of CdTe?

4. What is the band structure of CdTe?

5. What is the density of state of CdTe?

1.4 Objectives

1.4.1 General Objective

The general objective of this study is to investigate the electronic and structural prop-

erties of Cadmium Telluride (CdTe) using Density Functional Theory with the help of

Quantum ESPRESSO package.

1.4.2 Specific Objectives

The specific objectives of this study were:

1. To calculate the total minimum energy of CdTe per atom with respect to cut-off

energy.

2. To investigate the total minimum energy of CdTe per atom with respect to k-points

sampling.

3. To compute the lattice constant of CdTe with respect to cut-off energy and k-

points sampling.

4. To determine the band structure of CdTe using density functional theory and

compare it with experimental band gap.

5. To describe the density of states of CdTe using density functional theory.
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1.5 Significance of the Study

The major significance of this study was to understand the electronic and structural

properties of many electron system (in particular CdTe) helps to know about the sys-

tem in detail. Moreover, it helps to develop computational skill for solving many body

problems.

1.6 Scope of the study

The scope of this study is calculations of electronic and structural properties of Cad-

mium Telluride. However Cadmium Telluride has zincblende, wurtzite and rocksalt

structures. The total minimum energy and the equilibrium lattice constants of Cad-

mium Telluride were calculated with respect to cut-off energy and k-point samplings,

while the band gap and density of states of Cadmium Telluride were calculated based

on density functional theory (DFT). We can perform DFT calculations, using Quantum-

ESPRESSO, to calculate the crystal structure of CdTe. In this case the optimization pro-

cedure was repeated for hexagonal(wurtzite) and zincblende(FCC) .

1.7 Organization of the study

The thesis is organized and separated to five chapters. Chapter one is introduction

part which discusses background of the study, problem statement, objectives of the

study, its significance and the scope. Chapter two reviews of related literature. Chapter

three discusses research methodology. Chapter four discusses the results of the study

and includes, explains the results and discusses the findings of the study. Chapter five

concludes the results of the study.



2

Review of related Literature

Introduction

This chapter focusing on the basic Quantum mechanical description of many-body

system up to the theoretical background of the electronic and structural calculations

methodologies. For approximately solving many electron problems, the Hartree-Fock,

Hohenberg-Kohn, Thomas-Fermi, the Kohn-Sham, the modern DFT and whatever the-

ories are discussed in detail. Finally to perform calculations of a system, a plane wave

basis set and pseudo-potential can be reviewed.

2.1 Applications of CdTe

The successful development of a technique for the production of p-n type CdTe has

resulted in the fabrication of blue light emitting diodes (LEDs) and different microelec-

tronic devices [10]. CdTe is very important semiconductor material which is widely ap-

plied in different areas for several functions.

CdTe is used:

• As an infrared optical material for optical windows and lenses and is proven to

provide a good performance across a wide range of temperatures.

• X-ray and gamma ray detectors: Among the compound semiconductors, CdTe

have attractive growing interests in the development of X-ray and gamma ray de-

tectors. Due to its, high atomic number, high density and wide band gap, CdTe

detector ensure high detection ratio, at room temperature performance and are

very attractive for X-ray and gamma ray applications [11].

7



2.2 General Properties of Cadmium Telluride 8

• Electro-optic modulator/non-linear optics: One important application of CdTe

will most certainly be as an electro-optic modulator in both the near and the

far infrared. Because CdTe is a semiconductor with an energy gap of 1.5 eV, it

is opaque in the visible range of the spectrum.

• As gunn effect, piezoelectric and similar devices. CdTe, like GaAs, exhibits the

Gunn effect ; that is, above a certain threshold aplied field, high frequency current

oscillations are produced.

• To make thin film solar cell :its near ideal bandgap, CdTe has a high optical ab-

sorption coefficient.

• In nuclear detectors: Due to combination of high average atomic number, high

bandgap and reasonable mobility lifetime products for both electrons and holes

yield CdTe a quite unique combination of properties for the purpose [4].

2.2 General Properties of Cadmium Telluride

CdTe has arguably the lowest production cost per watt and compete to energy genera-

tions using fossil matter. In general, thin films have inherent benefit in manufacturing,

as they can be manufactured in large areas with high speeds of fabrication. Power Con-

sumption and materials usage during fabrication is little for thin film deposition (order

of 2g/m2). For higher band gap CdTe, the decrease in power generation at high op-

erating temperature is to a lesser extent. In research, CdTe technology have achieved

Cell-level performance over 22� and full-sized panels performance around 18.6�. CdTe

being thin film semiconductors, are polycrystalline in nature, i.e, within the material

there are very small crystallites about a micron and in between the crystallites are grain

boundaries [12]. Cadmium Telluride (CdTe) forms crystals in zincblende structure with

a lattice parameter of 6.482Å. Each Cd atom is tetrahedrally surrounded by four Te

atoms and vice versa. In theory semiconductors with a band gap of 1.5 eV are ideally

suited for solar cell applications. A 1-2 µm thick film of CdTe is enough for conversion

of sunlight into electricity. CdTe is a defect semiconductor with a dielectric constant

of 10.2. It can be doped both p and n-type [13]. Cadmium Telluride is a wide band gap

semiconductor belonging to the group II-VI and used commonly for optoelectronic ap-

plications. It is a very hard material with high heat capacity, thermal conductivity and

has resistance to chemical assault. In addition, Cadmium Telluride is mechanically sta-

ble extensive band gap compound with melting point 10410C, boiling point 10500C [5],
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average molar mass: 240.01g/mol and density 5.85g/cm3. CdTe is insoluble in water

and its clothing rate increases as humidity increases. Various research articles repeat-

edly pointed that it is exceedingly stable energy band gap (1.5 eV), it is also an excellent

candidate for devices operation in high temperature, high power, high frequency and

caustic situation. As mentioned above, CdTe is an attractive material, which is now in

an accelerated developing stage. In this work, general properties of CdTe is stated as

basic idea, including chemical, electrical and structural properties. As a consequence

of the direct band gap, the absorption edge of CdTe is very sharp and more than 90� of

the incident light is absorbed in a few micrometers, while a 20µm thick layer of Si is

needed to absorb the similar radiation intensity [5].

2.3 Crystal structure of CdTe

2.3.1 Zincblende structure of CdTe

Cadmium Telluride (CdTe) forms a Zincblende lattice with 2.94 × 1022atoms/cm3.

Zincblende CdTe has drawn big interest for a long time due to its many important ap-

plications in optoelectronics. The Zincblende structure is two interpenetrating face-

centered cubic (FCC) structures with Cd at (0,0,0) and Te at (¼, ¼, ¼), as shown in

figure 2.1 b displaced from each other along the body diagonal by a
4

, a being the lattice

constant for the Zincblende structure [14, 15]. These results into two different stack-

ing sequences: ABCABC along [111] direction. The ZB structure corresponds to the

staggered conformation of atomic arrangement along [111] body diagonal. The clos-

est neighbor (tetrahedral bond) arrangements in the ZB structure and in the ideal WZ

structure are the same. The main difference starts to come in the relative position of

3rd nearest neighbors and beyond. The lattice parameter for ZB CdTe is 6.482Å [16].
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2.3.2 Wurtzite structure of CdTe

Under certain conditions, CdTe can be found in a metastable hexagonal phase (the

wurtzite structure)[17]. A perfect WZ structure consists of two interpenetrating hexago-

nal closed packed (HCP) sublattices, one of atom A, the other of atom B, displaced from

each other by 3
8
c along the c-axis. These result into two various stacking sequences

ABAB. . . along c-axis. The arrangement of the distant atoms along the four different

tetrahedral bonds are different for a WZ structure. The lattice parameter for Wurtzite

CdTe is 4.57Å [16].

Figure 2.1: Structure of wurtzite and zincblende CdTe

Table 2.1: Structural parameters of WZ and ZB phases for CdTe

Compuond WZ ZB

a( Å) c
a

a( Å)

CdTe 4.57 1.637 6.482

2.4 Chemical properties of CdTe

CdTe is insoluble in water. It has a high melting point of 1041°C with evaporation start-

ing at 10500C. CdTe has a vapor pressure of zero at ambient temperatures. CdTe is

more stable than its parent compounds Cadmium and Tellurium and most other Cd

compounds, due to its high melting point and insolubility [5, 18]. Cadmium Telluride
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is commercially available as a powder, or as crystals. It can be made into nanocrys-

tals. The compound CdTe has distinct features than the two elements, Cadmium and

Tellurium, taken one by one. Toxicity examinations show that CdTe is much less toxic

than elemental Cadmium [18]. CdTe has low acute inhalation, oral, and aquatic toxicity,

and is poor in the Ames mutagenicity check. CdTe is no longer classified as harmful if

ingested nor harmful in contact with skin, and the toxicity type to aquatic lifestyles has

been decreased. Once properly and securely captured and encapsulated, CdTe used in

manufacturing procedure may be rendered harmless [18].

2.5 Density Functional Theory (DFT)

Density Functional Theory (DFT) is a computational quantum mechanical modeling

method which is widely practical in all areas of Physics and chemistry, wherever proper-

ties of systems need to be calculated [19, 20, 21]. Using this theory, a many electron sys-

tem can be determined by using functional, i.e, functions of another function, which in

this case is the spatially dependent electron density. It gives a theoretical account to ob-

tain the total energy, total minimum energy, cut- off energy, k-points, crystal structural

properties and etc [20, 22]. The DFT has its roots in Thomas-Fermi model for the elec-

tron structure of materials [23]. It became first put on a firm theoretical footing with the

aid of Walter- Kohn and Pierre Hohenberg within the framework of the two Hohenberg-

Kohn theorems (H-K) which states that:

(i) All ground –state properties of a system, including the total energy are some func-

tional of the ground-state charge density and

(ii) The correct ground state charge density minimizes the energy functional, i.e,

E[n] = T [n] + U [n] +

∫
V (r)n(r)δ3r (2.1)

Where n is the charge density, T is the kinetic energy, V is the potential energy

from the external field ( typically due to positively charged nuclei of crystal ), U is the

electron-electron interaction energy and r is the position. The formulation is applied

to any system of interacting particles in an external potential Vext(r) [24]. As mentioned

above, DFT follows different formulation to come through its central target. Some of

theories or formulation were encountered with some drawbacks. One of these is the

Thomas-Fermi theory, which is the poor approximation of kinetic energy functional.

There are significant advantages to a computational theory based on electron densities.
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The first is in relation to efficiency; the electron density depends on the three spatial

variables in contrast to the 4N variables that wave functions depends on (three spatial

and one spin per electron). Therefore, large system can be theoretically modeled. In ad-

dition, electron correlation is conceptually easier to include in DFT [23]. It has achieved

a certain status as a standard first method. This the first principle calculations have

gained great success in studying the equilibrium properties of matter, though there are

still many challenges to DFT [24]. One of the big issues is how to solve the problems

when encountering with electronic degeneracy. Such an issue usually does not pose a

problem to the equilibrium conditions. It is well known that electronic degeneracy can-

not exist in the ground state of a nonlinear atomic geometry. In DFT we only need to

find the charge distribution throughout our system. We can describe only single elec-

tron moving in a crystal mean field of all ions and other electrons. In this way we can

compute solids up to a few thousand atoms. DFT is a formally exact representation of

the N electrons Schrödinger equation. The extent to which DFT has contributed to the

chemical, physical and biological sciences is reflected by the 1998 Nobel prize in chem-

istry, which was awarded to Walter Kohn for the development of DFT, along with John

Pople for the development of quantum chemistry [24, 25]. The major problem in DFT is

that the exact functional for exchange and correlation are not known, except for the free

electron gas. The other well known difficulty met by DFT calculation was the underes-

timation of the bandgap of the materials ( specially semiconductors and insulators).

However approximations exist which permit the calculation of certain physical quanti-

ties quite accurately. In physics the most widely used approximation is the local density

approximation (LDA), where the functional depends only on the density at coordinate

where the functional is evaluated [26, 27, 28]. However in this study the generalized gra-

dient approximation (GGA) was used because of its better approximate nature.

2.6 Many Electron system

The ultimate goal of most formulation in solid state physics, quantum chemistry and

in this electronic structural calculation of CdTe is the solution of the time independent,

non relativistic Schrödinger equation. It is eigenvalue equation for the total energy op-

erator, the Hamiltonian Ĥ . The Hamiltonian contains all 3M coordinates of the nuclei

~R and the 3N coordinates of the electrons ~r. The electron mass is me, the masses of the

nuclei are named M, and proton numbers are Z. The electronic Schrödinger [29] of a
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system of N electrons reads,

HΨ(r1, . . . , rN) = EΨ(r1, . . . , rN) (2.2)

In the above equation, H is Hamiltonian of the system, E is energy, rN is coordinate

of the electron with index N and Ψ(r1, . . . , rN) is the many particles wave function [30].

H = T̂e + V̂ne + V̂ee + T̂n + V̂nn (2.3)

T̂e =

Nelec∑
i

−1

2
52
i (2.4)

V̂ne =
Nnuc∑
a

Nelec∑
i

Zα

[Ra − ri]
(2.5)

V̂ee =

Nelec∑
i

Nelec∑
j>i

1

| ri − rj |
(2.6)

T̂n =
Nnuc∑
a

−1

2
52
α (2.7)

V̂nn =
∑
a

∑
b>a

1

| Ra −Rb |
(2.8)

In atomic units.

Where, T̂e is the electronic kinetic energy,52
i is the Laplacian acting over the electronic

coordinates ri. T̂n is the energy corresponding to the motion of the nuclei, 52
α is the

Laplacian acting over the nuclues coordinates. V̂ee and V̂nn are the pairwise electrostatic

electron-electron and nucleus-nucleus interactions respectively, where | ri − rj | and

| Ra−Rb | are the electron-electron and nucleus-nucleus separations of the pairs which

are being considered, and Zα represents the charge of the αth nucleus [31].
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2.7 The Electron Density

The electron density n(r) is defined as the number of electrons per volume at the point

r in space. It is a physical quantity it can (at least in theory) be measured [32]. The inte-

gral of the electron density gives the total number of electrons,

∫
n(r)dr = N

The relation between n(r) and the many-electron wave-function Ψe is

n(r) = N

∫∫
...

∫
|Ψe(rσ1, X2, ..., XN)|2dσ1dX2...dXN (2.9)

2.8 Thomas-Fermi Theory

Thomas and Fermi studied the homogeneous electron gas in the early 1920’s . The or-

bitals of the system are, by symmetry, plane waves. If the electron- electron interaction

is approximated by the classical Hartree potential (that is exchange and correlation

effects are neglected) then the total energy functional can be readily computed [33].

Thomas Fermi Theory is the simple model of DFT. It come out when we ignore

the exchange energy and make the simplest possible approximation for the kinetic

energy [23, 28]. For a solely varying density function the kinetic energy density will only

depend on the number of density at the same position. Taking the specific function

from the Fermi gas, we get the kinetic energy functional.

T [n(~r)] =

∫
3

10

(3π2)
2
3

m
[n(r)]

5
3d3r (2.10)

And the sum of the kinetic energy and potential energy terms will yield us the total

energy within the Thomas Fermi approximations [24].

E[n(~r)] =
∫

3
10

(3π2)
2
3

m
[n(r)]

5
3d3r+

∫
e2

2

∫
n(~r)n(~r,)

| ~r − ~r, |
d3~rd3(~r,) + n(r)VN(r)d3r (2.11)

The first term of the right hand side of equation 2.11, is the kinetic energy of the non-

interacting electrons in a homogeneous electron gas, the second term is the potential

energy of the electrons due to their mutual electron repulsion and the third term is
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the potential energy of an atom’s electrons, due to the electric attraction of positively

charged nucleus. Note that the expression only depends on density n(r). Unfortu-

nately, this theory has limited validity due to its poor approximation of kinetic energy

functional [21].

2.9 Hartree-Fock Theory

The Hartree-Fock equations are determined by assuming that, the interactions of elec-

trons can be solved using a Slater determinant (derived using Pauli’s exclusion prin-

ciple). Hartree-Fock theory is essential to much of electronic structure theory. It

is the basis of molecular orbital (MO) theory, which posits that each electron’s mo-

tion can be described by a single-particle function (orbital) which does not depend

explicitly on the instantaneous motions of the other electrons. Hartree-Fock the-

ory was developed to solve the electronic Schrödinger equation that results from

the time-independent Schrödinger equation after invoking the Born-Oppenheimer

approximation [34]. Hartree-Fock Theory is the Variational theory obtained by the ex-

pectation value of the Hamiltonian, allowing all wave functions that can be repre-

sented as Slater determinants. This theory was formulated by two individuals, Hartree

and Fock. Fock applied the slater determinant to the Hartee method and proposed

the Hartree-Fock method and involves antisymmetric natures of waves(derived using

Pauli’s exclusion principle), spin orbital (slater determinant), orthogonality and angular

momentum [35]. One of the strategies of Hartree-Fock is, the self-consistent solutions

are obtained by employing variational principle, which is given by;

δ〈Ψ (N) | H | Ψ (N)〉 = 0 (2.12)

2.10 The Hohenberg-Kohn Theorem

The foundation of the DFT method is the Hohenberg-kohn theorem, which states that

for each given electronic density n(r), there is one and only one corresponding poten-

tial. All properties of the many body system are determined by ground state density.

The Hohenberg-Kohn theorem implies that the ground state for any system can be de-

termined by varying the charge density until the global minimum in the energy func-

tional is found[33].
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2.10.1 First Theorem of Hohenberg-Kohn

If E is the lowest possible energy of the system, i.e. the energy of the ground state, then

E is a unique functional of Electron density. The consequence of this statement is that,

in order to calculate the total energy E in the ground state, electron density is the only

required quantity[33].

E[Ψ ] = 〈Ψ | Ĥ | Ψ〉 (2.13)

Using Ψ0[ρ0] one can determine all properties by calculating;

〈Ô〉[ρ0] = 〈Ψ0[ρ0] | Ô | Ψ0[ρ0]〉 (2.14)

Where Ô is an arbitrary operator.

The proof of the statement is based on three premises,

• The external potential of the nuclei Vn is uniquely determined by the electron den-

sity in the ground state.

• This external potential determines uniquely the many electron wavefunction Ψ ,

in any quantum state.

• In any quantum state the total energy E, is a functional of many body wavefunc-

tion Ψ

By combining three premises we can say that, in ground state, the density uniquely

determines the total energy: n → Vn → Ψ → E. The third premise simply reinstate

equation 2.12 and the second premise means that if we change the positions of nuclei,

we will obtain different many body wave function. In order to prove first premise, we

assume that the same ground state electron density can be obtained from two different

external potentials. If we can show our assumption leads to contradiction, then we can

say the first premise is valid. To do that the kinetic energy and potential energy terms

are introduced [36].

T̂ = −
∑
i

1

2
52
i , Ŵ =

1

2

∑
i 6=j

(
1

| ri − rj |
) (2.15)

Using this we can write the total energy notation as follows:

E =

∫
drn(r)Vn(r) + 〈Ψ | T̂ + Ŵ | Ψ〉 (2.16)
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Now, let us assume that Ψ is the ground state wavefunction for the potential Vn. If

there exist another external potential V
′
n 6= Vn, which generates the same Energy, den-

sity n, Ĥ, Ψ̂ and Ê are the Hamiltonian ,ground state wavefunction and the ground state

energy corresponding to the new potential. Since, Ψ is not the ground state of the V
′
n we

can write:

E
′
<

∫
drn(r)V ′n(r) + 〈Ψ | T̂ + Ŵ | Ψ〉 (2.17)

Combining equations 2.16 and 2.17:

E − E ′ >
∫
drn(r)[V ′n(r)− Vn(r)] or

E ′ − E >
∫
drn(r)[Vn(r)− V ′n(r)]

Since we did not make any assumptions for external potentials. As a result, adding up

the last two equations obtain, 0 > 0 . This is a contradiction and our assumption that

the two different potentials give same ground state density is false. This proves that the

first premise stated above is valid for the ground state energy. In general, this theorem

states that there exists a one-to-one mapping between the ground-state wave function

and the ground-state electron density.

2.10.2 Second Theorem of Hohenberg-Kohn

A universal functional for the energy E[n] interms of the density n(r) can be defined,

valid for any particular Vext(r), the exact ground state energy of the system is the global

minimum value of this functional, and the density that minimize the functional is the

exact ground state density n0(r)[37].

E[n] = T [n] + VNe[n] + Vee[n]

= FHK [n] + VNe[n] (2.18)

where FHK [n] = T [n] + Vee[n] which is universal functional. The second theorem an-

swers the question how to identify the ground state density.

2.11 The Kohn-Sham Approach/ theory

In 1965 Kohn and Sham took the total energy in the independent electron approxima-

tion as the combination of kinetic and Coulomb energy of independent electrons and

the exchange and correlation energy that accounts for all the difference. The Hohen-

berg and Kohn theorems facilitate the treatment of quantum systems by stating, that
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the electron density of the ground state completely describes a system. Kohn and Sham

(KS) proposed to put wave mechanics in to the kinetic energy functional, but retain the

density variable n(r) elsewhere. Their theory was tightly linked to Hartree-Fock slater

approximation of many body fermions theory [38, 37]. The weakest part of Thomas

Fermi theory was the treatment of kinetic energy functional in this theory. Kohn-Sham

considered the exchange and correlation energies and supposed to calculate the exact

kinetic energy of a noninteracting reference system with the same density as the real

interacting system.

EKS[φ1, . . . , φn] =
∑N

a
~2
2m

∫
d3r5 φ∗a.5 φa + 1

2

∫
d3r e2

|r−r′|n(r)n(r′)+

Exc[n] +
∑
a

d3rVext(r)|φ|2 (2.19)

Actual one-particle wave-functions are constructed as combinations of position de-

pendent parts and spin functions. The ground state wave-function of the many-

independent particle system is a Slater determinant Ψ = 1/
√
N !detijψj(ri, σi) ψr(r, σ) =

φi(r)χ(σ). The many-particle wave function is inserted in the usual expression for the

electron density Eq.2.9 to give the particle density,

Which is used together with the definition,

n(r) =
∑N

a | φa(r) |2

where the sum is taken over all occupied spin-states a (i.e, two per fully occupied or-

bital). Accurate values of the exchange and correlation energies obtained for chemi-

cally interacting systems are crucial for analysis of the impact of electron correlation

with in Kohn-Sham (KS) idea. The accuracy of the results of a good calculation (i.e, use

of a software with an accurate implementation of the KS equations) relies only on the

chosen exchange-correlation functional. In the theory of Kohn and Sham, the problem

of calculating the ground state properties of the system of interacting electrons is re-

duced to the problem of calculating these properties via a hypothetical system of non-

interacting electrons in an effective potential with the respective single electron wave

functions.

Ψi(r) =

Ψ↑i (r)

Ψ↓i (r)
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the spin-density matrix ρ is;

ρα,α′ =
N∑
i=1

Ψα
i (r)(Ψα

′

i (r))∗ (2.20)

with α =↑, ↓ can be defined. It is useful to introduce the particle density as well.

n(r) =
N∑
i=1

(|Ψ↑i (r)|2 + |Ψ↓i (r)|2) (2.21)

The Kohn-Sham solutions have been obtained from ab-initio wave function.

2.12 The exchange- correlation energy

The exchange-correlation energyExc of many electron system is the quantity of DFT. In

the context of Kohn-Sham theory, Exc is defined as a functional of the electron density

ρ. In K-S expression the total electronic energy E[ρ] is given by;

E[ρ] = Ts[ρ] + V [ρ] +WH [ρ] + Exc (2.22)

Where Ts− is the kinetic energy of a non-interacting particle system with density ρ

, V is the energy of electron-nuclear interaction, WH is the coulomb or Hartree energy

and Exc is the exchange-correlation energy. Exc[ρ] is the sum of distinct exchange and

correlation terms:

Exc[ρ] = Ex[ρ] + Ec[ρ] (2.23)

where,

Ex[n] =< Ψmin
n |V̂ee|Ψmin

n > −U [n] (2.24)

Where Ψmin
n is a single Slater determinant, equation 2.24 is just the usual Fock inte-

gral applied to the Kohn-Sham orbitals, i.e, it differs from the Hartree-Fock exchange

energy only to the extent that the Kohn-Sham orbitals differ from the Hartree-Fock or-

bitals for a given system or density (in the same way that Ts[n] differs from the Hartree-

Fock kinetic energy).

We note that

< Ψmin
n |T̂ + V̂ee|Ψmin

n >= Ts[n] + U [n] + Ex[n] (2.25)

and that, in the one-electron (V̂ee = 0) limit [29],

Ex[n] = −U [n] (N = 1) (2.26)
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The correlation energy is

Ec[n] =< Ψmin
n |T̂+V̂ee|Ψmin

n > − < Ψmin
n |T̂+V̂ee|Ψmin

n > (2.27)

Ec[n] ≤ 0 (2.28)

Since Ψmin
n is that wave function which yields density n and minimizes T̂ + V̂ee equa-

tion 2.27 shows that Ec[n] is the sum of a positive kinetic energy piece and a negative

potential energy piece. These pieces of Ec Clearly for any one-electron system [27].

Ec[n] = 0 (N = 1) (2.29)

Equations 2.26 and 2.29 show that the exchange-correlation energy of a one elec-

tron system simply cancels the spurious self-interaction U [n]. An accurate values of the

exchange and correlation energies obtained for chemically interacting systems are es-

sential for analysis of the electron correlation within Kohn-Sham theory and in order

to test and calibrate various DFT approximations (Local Density Approximation (LDA)

and Generalized Gradient Approximation (GGA)) [39].

2.12.1 The Local Density Approximation (LDA)

The local density approximation (LDA) is the most straightforward approximation of

the exchange-correlation energy. It was proposed already in the first works on a uni-

form electron gas system has a constant Veff . The symmetry of this system requires the

electron density to be constant n(r)=nunif . It also follows that the exchange-correlation

energy per particle is constant in space and thus can be expressed as a function (not

a functional) of the uniform density. The idea of this functional is the first look at the

case of a homogenous electron gas [40, 41]. In such a system, one considers the electron

moving in uniform external potential. LDA has been a great success e.g. for applica-

tions in the solid state. However, there are cases where its accuracy is not sufficient.

For example in the description of certain molecular system and for systems where ex-

plicit surfaces are present. In particular, LDA has a tendency to make chemical bindings

much too strong, i.e, LDA overbinds. In DFT, the electron density rather than the wave

function is the basic variable [41].

ELDA
xc [n] =

∫
n(r)εxc[n(r)]d~r (2.30)
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In LDA, there is no known formula to calculate the total energy of many electrons

moving in an external potential using the density. Hohnberg and Kohn proved that

there exist a universal functional of the density called, G[ρ] such that:

E[ρr] =

∫
V (r)ρd3r +

1

2

∫
ρrρŕ
| r − ŕ |

d3rd3ŕ +G[ρ] (2.31)

Where the first term on the right hand side is the energy due to external potential

while the second term is the classical coulomb energy of the electron system. The main

deficiency of LDA was the strong over binding with bond energies in error by about 1

eV. Due to this LDA is useless for most applications in condensed matter physics. On

other hand, the problem was hardly visible in solid state physics where bonds are rarely

broken, rearranged so that the errors canceled [39, 40]. Because of this, it is not applied

for computational purpose in this work.

2.12.2 The Generalized Gradient Approximation (GGA)

A generalized-gradient approximation (GGA) is abstractly defined as any generic func-

tion of the local value of the density and its squared gradient that is constructed to ap-

proximate the exchange-correlation energy per particle [39, 40]. This functional (GGA)

depends on the local electron density as the spatial variation of the electron density that

is represented by density gradient. The idea behind this functional was to improve the

approximation of LDA by considering not only the electron density, but also the local

gradient of that density [39]. The GGA functional can be written as;

EGGA
xc [n] =

∫
n(r)εxc[n(r)]5n d~r (2.32)

The EGGA
xc [n] is the exchange correlation energy per particle of an electron gas. The

GGA gives better total energies. When a bond between two atoms is broken, the surface

is increased. In GGA, this bond-breaking process is more favorable than in LDA and

hence bond is weakened. Thus the GGA therapies the over binding error of the LDA.

These gradient corrections greatly improved the bond energies and made density func-

tional theory useful also for chemists. The most widely distributed GGA functional is

the Perdew Burke-Ernzerhof (PBE) functional [39]and which is used in DFT to calculate

electronic and structural properties in this study.
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2.13 Plane wave basis sets and Pseudo-potentials

2.13.1 Plane wave basis set

In calculations of solid states or condensed matter, the DFT will be applied with plane

wave basis sets. When dealing with a crystal which has atoms periodically arranged, the

electrons are in a periodic potential U(r), where U(r + R) = U(r) and R is the Bravais

lattice. As the Bloch theorem states that, a discrete plane-wave basis sets are used to

expand the electronic wave function at each K-points. In principle, an infinite plane

wave basis sets required to expand the electronic wave function. However, the coeffi-

cients Ci, K + G for the plane waves with small kinetic energy, ~
2m
|K + G|2 are typically

more important than those with large kinetic energy. Thus, plane wave basis sets can be

truncated to include only plane wave that have kinetic energy less than some particular

cut-off energy [42].

2.13.2 The Pseudo-potential

Pseudo-potential is a smooth effective potential that reproduces the nucleus plus core

electrons on valence electrons [42, 43]. We want our pseudopotential and pseudo-

orbitals to be as smooth as possible so that expansion into plane waves is convenient

(i.e, the required kinetic energy cutoff is small). Pseudo-potentials have been intro-

duced to avoid describing the core elements explicitly and to avoid the rapid oscil-

lation of the wave function near the nucleus, which normally require either compli-

cated or large base sets. Due to this, the fundamental idea of pseudo-potential is the

replacement of one problem with another, that means its primary application in elec-

tronic structure is to replace the strong coulomb potential of the nucleus and the ef-

fects of tightly bound core electrons by an effective ionic potential acting on the valence

electron [42]. The pseudo-potential approximation is motivated by the fact that the be-

havior of valence electrons in the bonding region primarily determines the electronic

structure and the structural properties of many materials. In a pseudo-potential for-

mulation, the effect of the core electrons and that of nuclear potential are combined to

form an effective ionic pseudo-potential. The pseudo-potentials are commonly con-

structed, so that outside of a core region the valence pseudo wave functions match the

corresponding states derived from all electron calculation, inside the region they are

smooth functional. This formulation makes pseudo-potential calculations quite effi-
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cient, since the core orbital do not need to be recomputed. The relaxation correction

takes in to account the relaxation of the electron system up on the excitation of an elec-

tron. The orthogonalized plane waves(OPW) φk is defined φk = eik.~r +
∑

c bcΨ
c
k ř where

Ψk(r) is the core wave function the sum is over all core levels with Bloch wave vector ~k

and we require that φk are orthogonal to every core level.∫
d~rφck(~r)φk = 0

The starting point for pseudo potential calculations and analysis is the application of

nearly free electron (NFE) theory to find the valence levels (φvk). The pseudo-potential

is the sum of the actual periodic potential and VR.

where VR =
∑max

c (Ev
k − Ec)(

∫
drΨ c

∗

k Ψ)Ψ ck

H + VR = − ~2

2m
+ U + VR (2.33)

Where, U + VR = V

U- is negative near ion cores while VR - is always positive.

Hamann, Schluter and Chiang showed in 1979 how pseudo-potentials can be con-

structed in such a way that their scattering properties are identical to that of an atom to

first order in energy. There is a vast amount of principles by which the pseudopotentials

are constructed, but the main two requirements always have to be fulfilled:softness and

transferability. Softness implies that the small amount of plane waves should be used

for the core atomic region wave function. Transferability is the ability of the pseudopo-

tential to be used in any environment: molecules, solids, in compounds with different

elements, without any corrections in connection to the changes of environment. These

first principles pseudo-potentials relieved the calculation from the restrictions of em-

pirical parameters. Highly accurate calculations have become possible especially for

semiconductors and simple metals. An approach by Zunger and Cohen towards first

principles pseudo-potentials precedes other approaches.

Generally the D.Vanderbilt self-consistent ultra-soft pseudo-potentials have not only

reduced the cut-off energy we need, they have also let us concentrate on the valence

electron, reducing the number of states we need from Schrödinger equation [43].
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2.14 Periodic super cells

We would define the shape of the cell that is repeated periodically in space, the super

cell, by lattice vector~a1,~a2 and~a3. If we solve the Schrödinger equation for this periodic

system, the solution must satisfy a fundamental property known as Bloch’s theorem.

2.14.1 Bloch theorem

A Bloch function is the generalization of a plane wave for an electron in periodic poten-

tial. Bloch theorem states that in a periodic solid each electronic wave function can be

written as the product of cell periodic and wave like part.

Ψk(~r) = ei.G~rUk(r) (2.34)

Where Uk(r) is the periodic potential in space with the same periodicity as the sup-

per cell [19]. That is;

Uk(~r + n1~a1 + n2~a2 + n3~a3) = Uk(~r) (2.35)

for any integers n1, n2 and n3. This theorem is means that it is possible to try and

solve the Schrödinger equation for each value of k independently. The cell-periodic

part of the wave function can be expanded using a basis set consisting of a discrete set

of plane waves whose wave vectors are reciprocal lattice vectors of the crystal,

υk(r) =
∑
G

C
i,Gei

~G.~r (2.36)

whereCi,G are expansion coefficients, the reciprocal lattice vectorsG are defined by;

~G~a = 2πn (2.37)

for all ~a, where ~a is a lattice vector of the crystal and n is an integer. Therefore each

electronic wave function can be written as a sum of plane waves,

Ψk(r) =
∑
G

C
i,k+Gei(

~k+~G).~r (2.38)

The electronic wave functions at each k-point can be expressed in terms of a discrete

plane wave basis set. In principle the Fourier series is infinite. However, in practice we

can not work with an infinite basis set, it has to be truncated or limited. The number of

plane waves can be restricted by placing an upper boundary to the kinetic energy of the

plane waves. This boundary is called energy cut-off (Ecut)
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2.14.2 Cut-off energy

The Cut-off energy limits the number of plane wave components. The minimum length

scale depends on the elements in the system. Energy monotonically decreases to the

ground state energy as Ecut increases [43, 44]. Our discussion of k-space would begin

with Bloch’s theorem, which tells us the solutions of the Schrödinger equations for a

super cell that have the form;

Ψk(r) = ei
~k.~rυk(r) (2.39)

where υk(r) is periodic in space with the same periodicity as the super cell. It is now

time to look at this part of the problem more carefully. The periodicity of υk(r) means

that it can be expanded in terms of a special set of plane waves:

Ψk(r) =
∑
G

C
i,Ge[i(

~k+~G).~r] (2.40)

where the summation is over all vectors defined by;

~G = n1
~b1 + n2

~b2 + n3
~b3 (2.41)

with integer valuesni. The set of vectors defined by ~G in reciprocal space are defined.

So that for any real space lattice vector, combining equation 2.40 and 2.41 gives;

Ψk(r) =
∑
G

C
i,k+Ge[i(

~k+~G).~r] (2.42)

According to this expression, evaluating the solution at even a single point in k-

space involves a summation over an infinite number of possible values of G. This does

not use for practical calculations. they are solutions with kinetic energy:

E =
}2

2m
|~k + ~G|2 (2.43)

It is reasonable to expect that the solutions with lower energies are more physically

important than solutions with very high energies. As a result, it is usual to truncate the

infinite sum above to include only solutions with kinetic energies less than some value:

Ecut =
}2

2m
~G2
cut (2.44)

The infinite sum then reduces to;

Ψk(r) =
∑

|G+k|<Gcut

C
G+ke

[i(~k+~G).~r] (2.45)
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This expression includes slightly different numbers of terms for different values of k.

The discussion above has introduced one more parameter that must be defined when-

ever a DFT calculation is performed, the cutoff energy (Ecut). In many ways, this param-

eter is easier to define than the k-points, as most packages will apply sensible default

settings if no other information is supplied by the user. One very important thing is we

always have to ensure the cut-off energy to give accurate results. This can be done by

repeating the calculation with higher cut-off energies until the properties we are inter-

ested in have converged [43, 44].

2.14.3 K-points sampling

The solution that is used most widely was developed by Monk-horst pack in 1976 a reg-

ular grid in k-space. The symmetry of the cell may be used to reduce the number of

k-points which are needed. Using these methods, one can obtain an accurate approx-

imation for the electronic potential and the total energy of an insulators or semicon-

ductor by calculating the electronic states at a very small number of k-points. The elec-

tronic potential and total energy are more difficult to calculate if the system is metallic

because a dense set of k-points is required to define the Fermi surface precisely. The

magnitude of any error in the total energy due to inadequacy of the k-points sampling

can always be reduced by using a denser set of k-points. This means we need to make

sure that we use enough k-points to get accurate results. The computational cost of

performing a very dense sampling of k-space can be significantly reduced by using the

k-point total energy. For smaller numbers of k points, however, the energy varies con-

siderably as the number of k points is changed a clear indication that the number of k

points is insufficient to give a well-converged result [43, 44].
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Methodology

3.1 Methodology

In this thesis Density Functional Theory calculations were performed with the general-

ized gradient approximations of Perdew-Burke-Ernzerhof (GGA-PBE) exchange corre-

lation functional, Vanderbilt ultra soft pseudo-potential and the plane wave basis sets

are implemented in the Quantum ESPRESSO program package. Quantum ESPRESSO

is an integrated module of computer codes for electronic structural calculations and

materials modeling depending on the frame work of DFT, plane wave basis sets (PW)

and pseudo-potentials to represent the electron-ion interaction. It is free, open-source

package distributed under the terms of the GNU General Public Licence (GPL).

The most important input parameters in Quantum Espresso are number of atoms in

unit cell,types of atoms in the periodic cell, bravais-lattice index, lattice parameters,

the kinetic energy cut-off, k-points, atomic species and atomic position. The structure

of the normal phase of CdTe was optimized until the total energy has been converged.

Also several sets of Monk-Horst-Pack k-point grid samplings were tested. Plane waves

are easy lattice-periodic basis functions but in general not possible to expand the crys-

tal wave function in plane waves because of the strong oscillation near the cores (al-

most infinitely many plane waves) would be required. The pseudo-potential method

avoids the problem. A very famous one is the ultrasoft pseudo-potential. The ultra-

soft pseudopotential is constructed to be smoother, which has the advantage that an

even smaller amount of plane waves are needed for the expansion, so that it predicts

the exact ground state energy than the other. A popular implementation of the ultrasoft

pseudopotential method is the open source plane-wave self-consistent-field (PWscf).

The PWscf or the iterative approach to self consistency using different techniques in

the frame work of the plane wave pseudopotential method with regards to the ultrasoft

pseudopotentials are implemented. In this work, PWscf with GGA exchange correlation
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functionals were used.

To solve the Kohn-Sham equations, we first specify the nuclear coordinates in order to

obtain the nuclear potential Vion(r). Now an assumed value for electron density is used

to determine approximate hartree and exchange and correlation potentials. By solving

the Koh-Sham equations, we obtain the new wavefunctions Ψi, which can be used to

construct a better estimate of density and the total potential. These iterations continue

till the new density matches the old density within an acceptable tolerance. Once, we

calculate the electron density in ground state, n(r), it is possible to calculate the total

energy E of the system, as it is functional of ground state electron density. The flow

chart, in figure 3.1 illustrates a clear computational procedure for calculation.
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Figure 3.1: Schematic flow diagram for finding the self consistent solutions for Kohn-

Sham equations
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Results and Discussion

Introduction

In this thesis first principle calculation was employed to calculate the electronic and

structural properties of CdTe using Quantum espresso package. The plane wave self-

consistent field (PWscf) code is implemented as our first principle energy code which

uses ultra-soft pseudopotentials (US-PP) within density functional theory. The main

features of pseudising process is to eliminate the effects of rapid oscillations of the core

electrons near the nuclei or to replace the strong coulomb potential with the weaker

one. Thus the ultra-soft pseudopotentials with Perdew-Burke-Ernzerhof (PBE) ver-

sion of the generalized gradient approximation (GGA) exchange correlation functional

were employed to calculate the electronic and structural properties of wurtzite and

zincblende CdTe. The convergence issue was checked in two ways for both structure

(wurtzite and zincblende). Firstly by varying cutoff energy from 50 Ry to 140 Ry for fixed

Monk-Pack mesh grid (K-points) and lattice constants. Secondly, by varying K-point

samplings (2 to 12) keeping cutoff energy and lattice parameters constant for wurtzite

and zincblende structure.

The equilibrium lattice constant was calculated by fixing cutoff energy at 110 Ry and

K-point at 7×7×7 for wurtzite CdTe and 110 Ry and 4×4×4 for zincblende CdTe. Finally

the band structure and density of states of CdTe have been investigated based on DFT.

30
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4.1 Total minimum energy of CdTe per atom with respect to energy

cutoff

The total minimum energy of CdTe per atom with respect to cutoff energy was calcu-

lated for fixed values of K-Points and lattice constant. The calculation was done using

different energy cutoff values from 50 Ry to 140 Ry.

Table 4.1: The computed results of total minimum energy with respect to energy cutoff

for wurtzite and zincblende CdTe

Energy cutoffs (Ry) Total minimum energy (Ry)

wurtzite CdTe zincblende CdTe

50 -282.56440686 -141.28383555

60 -282.57268164 -141.28797450

70 -282.57659668 -141.28991597

80 -282.57691969 -141.28991597

90 -282.57843382 -141.29083741

100 -282.57992962 -141.29158398

110 -282.58023647 -141.29173426

120 -282.58033525 -141.29178420

130 -282.58074079 -141.29198791

140 -282.58113269 -141.29218312

4.1.1 Convergence test of total minimum energy of CdTe per atom

with respect to cutoff energy

The convergence test of the total minimum energy of CdTe with respect to the plane

wave cutoff energy was investigated. An increment of energy cutoff for wave function is

made until the convergence is achieved. The total minimum energy was converged for

wurtzite and zincblende at 110 Ry plane wave cutoff energy and the total ground state

energy had its minimum at -282.58023647 Ry and -141.29173426 Ry respectively. The

calculated results show that the total minimum energy for wurtzite and zincblende, is

monotonically decreasing with increasing energy cutoffs for wave function as shown

in Fig 4.1. The accuracy of the ground state energy depends on the number of basis

functions. We can realize that when the number of basis functions approaches infinity,

energy is close to the ground state energy.
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Figure 4.1: Total minimum energy of CdTe per atom with respect to cutoff energy

4.2 Total minimum energy of CdTe per atom with respect to K-point

grids

In this case, the calculation was done using different k-point grids from 2×2×2 to

12×12×12 mesh grids. Here the other variables such as lattice constant and energy cut-

off were kept fixed. The computed result is described in Table 4.2.
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Table 4.2: The computed results of total minimum energy with respect to K-point grids

for wurtzite and zincblende CdTe

k-points grid Total minimum energy (Ry)

wurtzite CdTe zincblende CdTe

2x2x2 -282.50364423 -141.27964292

3x3x3 -282.57268164 -141.28394088

4x4x4 -282.58552855 -141.28383555

5x5x5 -282.58848056 -141.28376582

6x6x6 -282.58928270 -141.28375938

7x7x7 -282.58954203 -141.28376020

8x8x8 -282.58962377 -141.28375706

9x9x9 -282.58965573 -141.28376067

10x10x10 -282.58966995 -141.28376036

11x11x11 -282.58967666 -141.28375866

12x12x12 -282.58968077 -141.28375906

4.2.1 Convergence test of total minimum energy of CdTe per atom

with respect to K-points sampling

A convergence test of total minimum energy for k-point sampling was performed on

CdTe. The total minimum energy of CdTe atom was calculated using various sets of

k-points ranging from 2×2×2 to 12×12×12 for both wurtzite and zincblende structure.

In each of these cases the plane wave kinetic energy cutoff 50 Ry was used. The total

minimum energy of CdTe is calculated as a function of k-points grid size using PWscf

code. For this calculations, the other variables (lattice constant, energy cutoff) are kept

constant. Convergence of the total energy with respect to the discrete Brillouin zone

sampling for wurtzite CdTe was achieved at 7×7×7 Monkhorst-Pack mesh grid. The

total ground state energy has its minimum at -282.58954203 Ry. Convergence of the

total energy with respect to the discrete Brillouin zone sampling for zincblende CdTe

was achieved at 4×4×4 Monkhorst-Pack mesh grid. The total ground state energy has

its minimum at -141.28383555Ry as shown in fig 4.2



4.3 The equilibrium lattice constant of CdTe 34

Figure 4.2: Total minimum energy of CdTe per atom with respect to K-point grids

4.3 The equilibrium lattice constant of CdTe

4.3.1 Structural optimization

To optimize the structural parameter of CdTe in wurtzite structure, 110 Ry cutoff energy

and 7×7×7 k-point grid size were used. Similarly to optimize the structural parameter

of CdTe in zincblende structure, 110 Ry cutoff energy and 4×4×4 k-point grid size were

used from the above convergence test for both structure. To perform this calculation

we varied the value of lattice constant of ’a’ around experimental value fixing the other

parameters constant. The lattice constant versus the total minimum energy of CdTe is

shown in fig 4.3.

4.3.2 Convergence test of total minimum energy of CdTe versus

lattice constant

To find the equilibrium lattice constant of wurtzite and zincblende CdTe we perform

total energy calculation for a series of plausible parameters. In this calculation the en-

ergy cutoff and the k-point sampling for wurtzite structures are made fixed (110 Ry,

7×7×7 k-point) using the cutoff and k-point grid criteria for energy convergence. The

numerical calculation shows that the equilibrium lattice constant for wurtzite CdTe, is

a= 8.8515 bohrs, c=14.502bohrs ( a=4.684 Å, c=7.684 Å). Similarly for zincblende struc-



4.4 Band structure of Cadmium Telluride 35

Figure 4.3: Total minimum energy of CdTe versus lattice constant

ture the energy cutoff and the k-point sampling are made fixed (110 Ry, 4×4×4 k-point)

using the cutoff and k-point grid criteria for energy convergence. The numerical calcu-

lation shows that the equilibrium lattice constant for zincblende CdTe, is 12.4722 bohrs

(6.60 Å). The calculated error for wurtzite structure is 2.49� and for zincblende struc-

ture is 1.82�. For both structure the result is in a good agreement with experimental

value and the published results [16, 47].

4.4 Band structure of Cadmium Telluride

To determine the band structure the k-points are generated along high symmetry points

using k-point path with the help of xcrysden software. The energy band structure of

CdTe is presented in fig 4.4. Energy gap between occupied and unoccupied energy

levels is among the ways that we can determine the difference between electrical prop-

erties of metals, semiconductors and insulators. The band gap has been calculated as

the difference between the energies for the minimum of the conduction band and the

maximum of the valence band. From the band structure of CdTe, we calculated the

band gap energy, for wurtzite and zincblende CdTe the values are 0.595 eV and 0.605

eV respectively. For both structure the calculated results are in a good agreement with

the published results [45, 46, 47]. The band gap obtained in this work is much smaller

than the experimental value of 1.5 eV [45]. The calculated error for wurtzite structure is
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58.68� and for zincblende structure is 58 �.

Figure 4.4: Band structure of Cadmium Telluride

Table 4.3: Comparison of calculated structural and electronic properties of CdTe in this

study to others

GGA Calculation

Results from wz(LP in Å ) zb(LP in Å) wz(BG in eV) zb(BG in eV)

our work A=4.684, C=7.684 6.60 0.595 0.605

Applying quantum ATK [36] 6.614 0.89

A validation of the

ACBN0 functional. [45] A=4.55, C= 7.451. 6.621 0.64 0.58

Relative stability of zb

and wz in CdX(X=S,Se,Te) [16] 0.65 0.69

LDA/GGA calculations

dependence on U [46] 6.630 0.58

Experiment [46] A=4.57, C=7.674 6.482 1.5 1.5

4.5 Density of state of Cadmium Telluride

The main issue we can see from calculating the density of states (DOS) of Cadmium Tel-

luride is the investigation of its electronic transport properties. The Fermi level was ref-

erenced at 4.699 eV and 4.722 eV for wurtzite and zincblende respectively In the fig 4.5.

The calculated energy gap of CdTe between unoccupied (conduction) energy level and



4.5 Density of state of Cadmium Telluride 37

occupied (valence) energy level is 0.58 eV for wurtzite and 0.79 eV for zincblende CdTe.

So the calculated value shows us, the system (CdTe) is a semiconductor.

Figure 4.5: Density of states (DOS) of Cadmium Telluride.
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Conclusion

In this thesis first principle calculation (DFT) was used to investigate the electronic

and structural properties of CdTe. The plane wave self consistent field (PWscf) and

ultra-soft pseudopotentials with generalized gradient approximation (GGA) were im

plemented in Quantum Espresso package. All calculations have been carried out using

Quantum Espresso package. The total minimum energy calculation was performed as a

function of cutoff energy and k-point samplings. The total minimum energy of wurtzite

CdTe per atom is -282.58023647 Ry with respect to energy cutoff and -282.58954203 Ry

with respect to k-point grid size. The total minimum energy of zincblende CdTe per

atom is -141.29173426 Ry with respect to energy cutoff and -141.28383555 Ry with re-

spect to k-point grid size. The computational results show that the total minimum en-

ergy per atom is monotonically decreasing with increasing cutoff energy due to varia-

tional principle. However, this trend can not be predicted from increasing the k-point

sampling. The optimal lattice constant of CdTe was calculated using the above total

energy convergence test by varying lattice parameter of ’a’. Our numerical calculation

shows that the equilibrium lattice constant is (a = 4.684 Å and c = 7.684 Å, for wurtzite

and a=6.60 Å for zincblende). The obtained result is overestimated as compared to the

experimental result ( a = 4.57 Å, c = 7.674 Å for wurtzite and a=6.482 Å for zincblende)

due to the approximate nature of the applied DFT. The band structure was determined

by generating k-points along high symmetry points using K-point path with the help

of xcrysden software. The computed values of band structure and density of states of

wurtzite Cadmium Telluride was 0.595 eV and 0.58 eV respectively. The computed val-

ues of band structure and density of states of zincblende Cadmium Telluride was 0.605

eV and 0.79 eV respectively.
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