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       Abstract 

In this thesis, fitted non polynomial cubic spline method for solving singularly perturbed robin 

type boundary value problems with discontinuous source term is considered. The stability and 

parameter uniform convergence of the proposed method are proved. To validate the applicability 

of the scheme, two model problems are considered for numerical experimentation and solved for 

different values of the perturbation parameter,   and mesh size, .h  The numerical results are 

tabulated in terms of maximum absolute errors and rate of convergence and it is observed that 

the present method is more accurate and  -uniformly convergent for h    where the classical 

numerical methods fails to give good result and it also improves the results of the methods 

existing in the literature. 
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CHAPTER ONE 

INTRODUCTION 

1.1. Background of the Study 

    Numerical analysis is the area of mathematics and computer science that creates, analyzes, and 

implements algorithms for solving numerically the problems of discretized mathematics. Such 

problems originate generally from real-world applications of algebra, geometry and calculus, and 

they involve variables which vary continuously; these problems occur throughout the natural 

sciences, social sciences, engineering, medicine, and business ( Rajasekar an, S. (1992).  

   A differential equation is said to be singularly perturbed differential equation, if the highest 

derivative term is multiplied by small parameter. It is well known that singularly perturbed 

problem often have very thin boundary and internal layers where the solution varies rapidly 

change, whereas away from the layer, solution behaves regularly and varies slowly, so the Miller 

numerical treatment of singularly perturbed problems faces major difficulties (Miller, 1974, 

Riordan, 2003). Due to the variation in the width of the layer with respect to small perturbation 

parameters several difficulties are experienced in solving the singularly perturbed problems 

using the standard numerical methods with uniform mesh ( Kadalbajoo, 2005). 

    Singular perturbation problems (SPPs) model convection–diffusion process in applied 

mathematics that arise in diverse areas, including linearized Navier–Stokes equation at high 

Reynolds number and the drift-diffusion equation of semiconductor device modeling, heat and 

mass transfer at high Pe´clet number etc (Roos, et al, 1996, Doolan et al, 1980).  

     The novel aspect of the problem under consideration is that we take a source term in the 

differential equation which has a jump discontinuity at one or more points in the interior of the 

domain. This gives rise to an interior layer in the exact solution of the problem, in addition to the 

boundary layer at the outflow boundary point. Our goal is to construct an   uniform numerical 

method for solving this problem, that is a numerical method which generates   uniformly 

convergent numerical approximations to the solution and its derivatives. Note that problems with 

discontinuous data are treated theoretically, in the case of the solution of the convection- 

diffusion with Dirichlet case problem (Farrell et al, 2004a, Farrell et al, 2004b). Authers such as 

(Chandru and Prabha, 2014), (Chandru et al, 2014), (Roos and Zarin, 2010), (Farrell et.al, 1998) 

were discussed a self-adjoint Dirichlet type problem with discontinuous source term. Shanthi et 
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al, (2006), Shanthi and Ramanujam (2002),  Shanthi and Ramanujam (2004),  have examined 

two parameter singularly perturbed BVPs for second order ODEs with discontinuous source 

term. 

     Boundary value problem of the type (1)–(2) model confinement of a plasma column by 

reaction pressure and geophysical fluid dynamics (Chin and Krasny, 1983). 

Ansari (2003) was discussed the nature of problem in the Dirichlet case 

1 1 2 21, 0, 1, 0        and in the Neumann case 1 1 2 20, 1, 0, 1.         

     For detailed study one may refer (Ansari, 2003) and (Farrell, 2000). Various methods are 

available in literature to obtain numerical solution to singularly perturbed differential equation 

(1) subject to Robin boundary conditions when  f is smooth on  (Ansari, 2003), (Natesan and 

Ramanujam, 2000), (Natesan and Bawa, 2007) and (Natesan, and Ramanujam, 1999). Some 

recent works have been done in similar type of problem with smooth data as follows. The 

numerical integration method for general singularly perturbed boundary value problem with 

mixed boundary condition is presented in Andargie and Reddy (2008).  Prasad and Reddy (2011) 

have shown the advantages of Differential Quadrature Method (DQM) for finding the numerical 

solution (Mohapatra et al, 2011).  Das et al. (2013) have discussed on system of reaction 

diffusion differential equations for Robin or mixed type boundary value problems by a cubic 

spline approximation. From this investigation the author considered a non-self adjoint Robin 

type problem with discontinuous source term, and obtained a parameter uniform convergent 

solution for equation (1)–(2). 

     Recently, Shandru and shanthi (2015) and Abagero et al.,(2021), presented fitted mesh and 

nonstandard  finite difference method to solve singularly perturbed  robin type boundary value 

problems  with discontinuous source term. As far as the researcher‟s knowledge is concerned, 

numerical solution of singularly perturbed robin type boundary value problem with 

discontinuous source terms via fitted non-polynomial spline method is first being considered. 

Additionally, still there is a room to increase the accuracy because of the treatment of singular 

perturbation problem is not trivial distributions and the solution depend on perturbation 

parameter   and mesh size h  (Doolen  et.al 1980). Due to this numerical treatment of singularly 

perturbed boundary value problems are needs improvement.   

     Therefore, it is important to develop more accurate and convergent numerical method for 

solving singularly perturbed boundary value problems. Thus, the purpose of this study is to 
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developed stable, convergent and more accurate numerical method for solving singularly 

perturbed boundary value problems by using fitted non polynomial cubic spline method.  

1.2. Objectives of the Study 

1.2.1. General Objective 

The general objective of this study is to develop a fitted non-polynomial cubic spline method for 

solving singularly perturbed robin type boundary value problem with discontinuous source 

terms. 

1.2.2. Specific Objectives 

The specific objectives of the present study are: 

1. To formulate fitted non-polynomial cubic spline method for solving singularly 

perturbed robin type boundary value problem with discontinuous source terms. 

2. To analyze the convergence of the scheme. 

3. To investigate the accuracy of the proposed method. 

1.3. Significance of the Study 

The outcomes of this study may have the following importance: 

 Provide some background information for other researchers who work on this area. 

 To introduce the application of numerical methods in different field of studies. 

1.4. Delimitation of the Study 

     Singularly perturbed problems are perhaps arises in variety of mathematical and physical 

problems. However, this study is delimited to solve singularly perturbed robin type with 

discontinuous source terms of the form:  

( ) ( ) ( ) ( ) ( ) ( ) ( ),Ly x y x p x y x q x y x r x        ( )x                          (1)                                                                         

subject to boundary conditions, 

                 1 1 1 2 2 2(0) (0) (0) ,   (1) (1) (1) ,L y y y s L y y y t                                              (2) 

where 1 1 1 1 2 1, 0,   0,  0,  0,           and 0    is small parameter ( )p x ,  ( )q x    are 

smooth functions   such that ( ) 0, ( ) 0.p x q x      
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It is convenient to introduce the notation (0,1),  (0, ),   ( ,1),   d d d         and to 

denote the jump at d in any function. 
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CHAPTER TWO 

REVIEW OF RELATED LITERATURE 

2.1. Singularly Perturbed Problems  

      Science and technology develops many practical problems, such as the mathematical 

boundary layer theory or approximation of solution of various problems described by 

differential equations involving small parameters have become increasingly complex and 

therefore require the use of asymptotic methods. The term „singular perturbations‟ was 

first used by Friedrichs et al. (1946) in a paper presented at a seminar on non-linear 

vibrations at New York University. Singularly perturbed problems arise frequently in 

applications including geophysical fluid dynamics, oceanic and atmospheric circulation, 

chemical reactions, civil engineering, optimal control, etc. The classification of singularly 

perturbed higher order problems depend on how the order of the original equation is 

affected if one sets 0,   where    is a small positive parameter multiplying the highest 

derivative occurring in the differential equation. If the order is reduced by one, we say 

that the problem is of convection-diffusion type and of reaction-diffusion type if the order 

is reduced by two. It is well known that the solution of singularly perturbed boundary 

value problems is described by slowly and rapidly varying parts. So there are thin 

transition layers where the solution can jump suddenly, while away from the layers the 

solution varies slowly and behaves regularly (Akram and Afia, 2013). Many scholars 

have studied the analytical and numerical solutions of these problems.( Abrahamsson et 

al. 1974) solved singularly perturbed ordinary differential equations using difference 

approximations. Numerical treatment of singularly perturbed boundary value problems 

for higher-order non-linear ordinary differential equations has a great role in fluid 

dynamics. The development of numerical methods for solving singularly perturbed 

problems started with methods aimed at solving ordinary differential equations, an 

account of which can be found in the first monograph on this subject by Doolan et al. 

(1980). Ilicash and Schultz (2004) introduced three finite-difference techniques for 

second-order singularly perturbed linear boundary value problems using convergent 

tension spline and on uniform tension spline methods. Valaramathi and Ramanujam 
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(2002) solved singularly perturbed two-point boundary value problems for third-order 

ordinary differential equations.  

2.2. Spline Based Method 

      The approximation theory is one of the main topics of numerical analysis. It is a 

foundation for numeral algorithms in the different fields of applied mathematics. 

Polynomials are the most easily handled in practice, since they can be represented by 

restricted information, evaluated in limited number of basic operations and easily 

integrated or differentiated. Spline is a piecewise polynomial function defined in a region, 

such that there exists a decomposition of the region into sub-regions in each of which the 

function is a polynomial of some degree d. Also the function, as a rule, is continuous  in 

the region, together with its derivatives of order up to d-1. 

   Numerical methods with spline functions in getting the approximate solution of the 

differential equations lead to a matrices which are solvable easily with algorithms having 

low cost of computation. Non-polynomial spline method has turned out to be an effective 

tool for solving ordinary and partial differential equations. Most of non-polynomial spline 

functions are consists of a polynomial and trigonometric parts as well as exponential 

parts. In many papers various techniques using quadratic, cubic, quartic, quintic, sextic, 

septic and higher degree non polynomial splines have been discussed for the numerical 

solution of linear and nonlinear boundary value problem. 

      Hence, in the recent times, many researchers have been trying to develop spline based 

methods. For example, Taha and Khlefha, (2016) concerned with the approximated 

solution of linear two-points boundary value problem using non-polynomial spline 

method.  

2.3. Numerical versus Analytical Methods 

     A numerical solution means making guesses at the solution and testing whether the problem 

is solved well enough to stop. An analytical solution involves framing the problem in a well-

understood form and calculating the exact solution. The best is when we can find out the exact 

solution using calculus, trigonometry and other techniques. The techniques used for calculating 

the exact solution are known as analytic methods because we used the analysis to figure it out.  
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    Numerical methods are commonly used for solving mathematical problems that are 

formulated in science and engineering where it is difficult or even impossible to obtain exact 

solutions. Numerical solution is discrete. Numerical methods, on the other hand, can give an 

approximate solution to solve equation.  

      Numerical methods to solve singular perturbation problems have been widely used in many 

fields of fluid dynamics, reaction-diffusion processes, particle physics, and combustion 

processes. These types of problems are represented by differential equations including   which is 

assumed to be a small parameter and solutions of the problems have non-uniform behavior when 

the parameter      Analytic solution is exact solution to a problem that can be calculated 

symbolically. Numerical methods give an approximate solution to solve equations. It is 

important to realize that a numerical solution is always numeric but analytical methods usually a 

result in terms of mathematical functions that can be evaluated for specific instances. However, 

numerical results can be plotted to show some of the behavior of the solution. A variety of 

numerical methods to solve singularly perturbed boundary value problem are available for 

ordinary differential equations.  

 2.4. Finite Difference Method (FDM) 

     The finite difference methods are a class of numerical techniques for solving differential 

equations by approximating derivatives with finite differences. Both the spatial domain and time 

interval (if applicable) are discretized, or broken into a finite number of steps, and the value of 

the solution at these discrete points is approximated by solving algebraic equations containing 

finite differences and values from nearby points.  

FDM is used to solve ordinary differential equations that have conditions imposed on the 

boundary rather than at the initial point. These problems are called boundary-value problems. Bo 

Strand (1994).  

Finite difference methods convert ordinary differential equations (ODE) or partial differential 

equations (PDE),in to nonlinear a system or system linear equations that can be solved by matrix 

algebra techniques.  
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CHAPTER THREE 

METHODOLOGY 

3.1. Study Area and period 

This study was conducted at Jimma University under the department of Mathematics from Feb. 

2023 to June 2023. Conceptually, the study focus on Fitted non-polynomial cubic spline Method 

for solving singularly perturbed robin type convection-diffusion problem with source term. 

3.2. Study Design 

The study employed mixed design (i.e., documentary review and numerical experimentation 

design). 

3.3. Source of Information 

     The relevant sources of information for this study are books, published articles and related 

studies from internet. 

3.4. Mathematical Procedure 

In order to achieve the stated objectives, the study   followed the following procedures: 

1. Describing the problem; 

2. Analyzing the properties of the continuous solution; 

3. Discretizing the solution domain; 

4. Developing fitted non-polynomial cubic spline scheme for the problem; 

5. Establishing the convergence analysis of the developed scheme; 

6. Developing an algorithm and writing code for the presented scheme; 

7. Validating the scheme using numerical examples 

8. Comparing of the result with the existing literature. 
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CHAPTER FOUR 

DESCRIPTION OF THE METHODS, RESULTS AND DISCUSSION 

 

4.1. Properties of continuous solution 

The differential operator for the above problem is given by 

2

2
,

d d
L p q

dx dx
     

and it satisfies the following minimum principle for boundary value problems (BVPs). The 

following lemmas (Doolan et al., 1980) are necessary for the existence and uniqueness of the 

solution and for the problem to be well-posed. 

Lemma 1: Suppose that the function 
1 2( ) ( ),y C C        satisfies 1 2(0) 0, (1) 0L y L y   

and ( ) 0,Ly x x       and  [ ]( ) 0,  then ( ) 0, .y d y x x      

Proof: For the proof refer (Shandru and shanthi, 2015) 

Lemma 2: (Stability result) Consider the boundary value problem (1)-(2) subject to the 

condition ( ) 0, ( ) 0p x q x      If 
1 2( ) ( ),y C C       then 

1 2max{ (0) , (1) , }.y C L y L y Ly    


 
Proof: For the proof refer (Shandru and shanthi, 2015) 

Lemma 3:  For each integer ,k  satisfying 0 4,k   the solution of y  of (1)-(2) satisfy the 

bounds 

( )

\{ }
.k k

d
y C 


    

Proof: For the proof refer (Shandru and shanthi, 2015) 

Lemma 4:  Let y be the solution of  P . Then, for 0,1,2,3,k   

( ) ( ) 1 exp ,   for all .k k x
y x C x     

     
   






  

Proof: For the proof refer (Shandru and shanthi, 2015) 
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      4.2. Formulation of the numerical scheme 

   The linear differential equation in equation (1) cannot, in general, be solved analytically 

because of the dependence of ( ) and ( )p x q x  on the spatial coordinate. We divide in to interval 

      in to N equal parts with constant mesh length h . Let 1 20 , ,..., 1Nx x x   be mesh 

points. Then we have ,  1,2,..., .ix ih i N    

If we consider, the interval [0,1],   the discretized form of Eq. (1) becomes  

         ( ) ( ) ( ) ( ) ( ) ( )i i i i i iy x p x y x q x y x r x    

 

   ( )x                                           (3) 

For each segment
, 1[ ], 1,2,..., 1i ix x i N    the non-polynomial cubic spline ( )S x  has the 

following form: 

            
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ),i i i iw x x w x x w x x w x x

i i i i iS x a b x x c e e d e e
     

                                       (4) 

where, , ,
ii ia b c  and  id  are   unknown coefficient, and  0w   arbitrary parameter which was 

used to increase the accuracy of the method. 

To determine the unknown coefficients in Eq. (4) in terms of  1, ,i i iy y M  and 1iM   first we 

define: 

                              
1 1

( ) ,

( ) ,

i i

i i

S x y

S x y



  





         

1 1

( ) ,

( ) .

i i

i i

S x M

S x M



  

 

 
                                                             (5) 

Differentiating Eq.(4), successively, we get , 

                         ( ) ( ) ( ) ( )
( ) ( ) ( ),i i i iw x x w x x w x x w x x

i i iS x b c w e e d w e e
    


                                      (6) 

                             ( ) ( ) ( ) ( )2 2( ) ( ) ( ),i i i iw x x w x x w x x w x x

i iS x c w e e d w e e
    


                                     (7) 

Substituting   iM  in Eq. (5) into Eq.  (7), we have 

( ) ( ) ( ) ( )2 2( ) ( ) ( )i i i i i i i iw x x w x x w x x w x x

i i i iS x M c w e e d w e e
     


                   

                      22i iM d w   

                      
22

i
i

M
d

w
                                                                                                              (8) 

Substituting  iy   in Eq. (5) in to Eq.(4),we  have  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )i i i i i i i iw x x w x x w x x w x x

i i i i i i i iS x y a b x x c e e d e e
    

          

               2i i iy a d     
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                        2i i ia y d                                                                                                         (9) 

Substituting  1iM   in Eq. (5 )  into Eq. (7) , we have: 

     1 1 1 1( ) ( ) ( ) ( )2 2

1 1( ) ( ) ( )i i i i i i i iw x x w x x w x x w x x

i i i iS x M c w e e d w e e        

  
       

                  2 2

1 ( ) ( )wh wh wh wh

i i iM c w e e d w e e 

       

                  2 2

1( ) ( )wh wh wh wh

i i ic w e e M d w e e 

      

                      1

2

( )
.

( ) ( )

wh wh

i
i iwh wh wh wh

M e e
c d

w e e e e





 


  

 
                                                                (10) 

Substituting Eq.(8) into  Eq.(10), we get  

           

1

2 2

( )
.

( ) 2 ( )

wh wh

i i
i wh wh wh wh

M M e e
c

w e e w e e





 


 

 
                                                                             (11) 

Substituting   1iy    in Eq. (5) into Eq. (4) we have:  

1( )iS x  = 1iy  = 1( )i i i ia b x x  + 1 1 1 1( ) ( ) ( ) ( )
( ) ( )i i i i i i i iw x x w x x w x x w x x

i ic e e d e e        
    

             
1 ( ) ( )wh wh wh wh

i i i i iy a b h c e e d e e 

        

             1 2
( ) ( )wh wh wh whi

i i i i i

M
b h y y c e e d e e

w

 

         

               1

2

( ) ( )wh wh wh wh

i i i
i i i

y y M e e e e
b c d

h hw h h

 

   
                                                    (12) 

Substituting Eq.(8) and Eq.(11) into  Eq.(12),  we have: 

                

1 1

2 2 2 2

( ) ( )
,

2 2

wh wh wh wh

i i i i i i
i

y y M M M e e M e e
b

h hw hw hw hw

 

   
       

                 1 1

2
.i i i i

i

y y M M
b

h hw

  
                                                                                        (13) 

Therefore the coefficients in Eq. (4) are determined as 

2

1 1

,

,

i
i i

i i i i
i

M
a y

w

y y M M
b

h w
 


 


   



         

1

2 2

2

( )
,

( ) 2 ( )

,
2

i i
i

i
i

M M e e
c

w e e w e e

M
d

w

 

   





 


 

 



        (14) 

where  wh  . 

Using the continuity condition of the first derivative at 1, ( ) ( ),i i ix S x S x 
  we have 

             1 1 1( ) ( ) 2 .i i i i ib wc e e wd e e b wc    

                                                                  (15) 
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Reducing indices of Eq.(14) by one and substituting  into Eq.(15), we obtain 

1 1 1 1

2 2

2 ( )
( ) ( )

2 ( ) 2

i i i i i i iy y M M M e e M M
w e e w e e

h w w e e w

 
   

 


    



      
       

   
 

    = 1 1 1

2

2 ( )
2

2 ( )

i i i i i iy y M M M e e M
w

h w w e e

 

 



  



    
   

 
                                                                    

                    1 1
1 1

2
2 ,i i i

i i i

y y y
M M M

h
   

 

 
   

                                                         (16)
 

where, 

               
2 2

1 2 1 ( )
1   and  1 .

( ) ( )

e e

e e e e

 

   

 
 

 



 

   
     

    
 

For 0, 0,h   since ,wh    as 0  by  using  L-Hopital‟s rule, we obtain   

        
0

1 1
lim   and  .

6 3
 


   

Using  ( )i iS x y M
    in to Eq.(3), we get  

                                            
1 1 1 1 1 1

1 1 1 1 1 1

i i i i i i

i i i i i i

i i i i i i

M r p y q y

M r p y q y

M r p y q y







     

     

  


  
   

                                                     (17) 

Using Taylor‟s series expansions of 1iy  , 1iy  , 1iy 
 , 1iy

 and   simplifying, we have  

                                  

1 1
1,

1 1
1 2

1 1
1 2

2

4 3

2

3 4
,

2

i i
i

i i i
i

i i i
i

y y
y T

h

y y y
y T

h

y y y
y T

h

 

 


 



  


  

  


 
  



                                                                   (18) 

where 

1T =
2 2

2 1( ) and ( ), ( , ).
6 12

i i

h h
y T y for x x   
      

Using Eq. (18) in to Eq. (17), we get 
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1 1
1

1 1
1 1 1 2 1 1

1 1
1 1 1 2 1 1

1

2

4 31

2

3 41

2

i i
i i i i i

i i i
i i i i i

i i i
i i i i i

y y
M r p T q y

h

y y y
M r p T q y

h

y y y
M r p T q y

h







 

 
    

 
    

    
      

  
       

      
  

     
      
   

                (19) 

Substituting Eq. (19) into Eq. (16) and rearranging, we get  

       1 1
1 1 1 1 1 1 1 12

2
2 4 3 3 4

2 2 2

i i i
i i i i i i i i i i i

p p p
y y y y y y y y y y y

h h h h

    
                   

        = 1 1 1 1 1 1( ) 2 ( ) ,i i i i i i i i iR q y R q y R q y T                                                                     (20) 

where  
2

1 1(4 ) ( )
12

i i i

h
T p p p y    

      is the local truncation error. 

From the theory of singular perturbations described in O‟Malley, (1991) and the Taylor‟s series 

expansion of p(x) about the point „0‟ in the asymptotic solution of the problem in Eq.(3), we 

have  

                              (0)

0 0 0( ) ( ) ( (0))
ih

p

i iy x y x y e      

and letting    ,
h




  we get  

                                                         
0

(0)

0 0
0

lim ( ) (0) ( (0)) p i

h
y ih y y e  


    

Introducing fitting factor ( )   in to Eq. (20), we get  

    

1

1
1 1 1 1 12

1
1 1 1 1 1 1 1 1

2( )
( 2 ) ( 4 3 ) ( )

2 2

(3 4 ) ( ) 2 ( )
2

i

i i
i i i i i i i

i
i i i i i i i i i i i i

p p
y y y y y y y y

h h h

p
y y y R q y R q y R q y T

h

   


 




    


       

       

         

                    (21) 

Multiplying Eq. (21) by and taking a limit as 0h , we get : 

        

11 1 1 1 1
0 0 0

1 1

(0)
lim( 2 ) lim( 4 3 ) (0) lim( )

2

(0)
(3 4 ) 0

2

i i

i

i i i i i i
h h h

i i

p
y y y y y y p y y

p
y y y

 






    
  

 

       

   

                 (22) 

Thus, we consider   the left boundary layers. 

  For p(x) > 0 (left –end boundary layer), we have 
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(0) (0) (0)

1 1 0 0
0

(0) (0) (0)

1 1 0 0
0

(0) (0) (0)

1 1 0 0
0

1 1
0

lim( 2 ) ( (0)) ( 2)

lim( 4 3 ) ( (0)) ( 3 4)

lim( ) ( (0)) ( 3 4)

lim(3 3 ) (

p i p p

i i i
h

p i p p

i i i
h

p i p p

i i
h

i i i
h

y y y y e e e

y y y y e e e

y y y e e e

y y y

  

  

  









 

 


 

 


 

 


 


     

       

    

   (0) (0) (0)

0 0 (0)) ( )p i p py e e e   









 

                                (23) 

Substituting Eq. (22) in to (23) and simplifying, we get  

                        
0

(0)
(0)( )coth .

2

p
p


   

 
   

   

In general,we take a variable fitting parameter as 

                          

( )
( )( )coth

2

i i
i i i

p x
p x


   

 
   

                                                             (24) 

          , .
h

where 




 

Thus,(21) can be written as 

    

1 1 1 1
1 12 2

1 1
1 1 1 12

3 2 2 2
2

2 2

3
( ) 2

2 2

i

i

i i i i i i
i i i i

i i i
i i i i i

pp p p p
q y q y

h h h h h h h

pp p
q y R R R

h h h h

     
 

  
  

   
 

 
   

   
          

  

 
        
 

               (25)        

         

Further, (21) can be written as three term recurrence relation of the form 

                             1 1 , 1,2,..., 1,N

i i i i i i iL E y F y G y H i N                                                   (26) 

where  

 

1 1
12

1 1

2

1 1
12

1 1

3

2 2

2 2 2
2

3

2 2

( ) 2

i

i

i i i
i i

i i i
i i

i i i
i i

i i i i

pp p
E q

h h h h

p p
F q

h h h

pp p
G q

h h h h

H R R R

  


  


  


 

 


 

 


 


    




   


     

   

 

The tri-diagonal system in Eq. (26) can be easily solved by the method of Discrete Invariant 

Imbedding Algorithm. 
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4.3. Truncation Error  

Let expand the term 1y   and 1M   from (16), using Taylors series as  

            

2 3 4 5 6
(4) (5) (6) 7

1

2 3 4 5 6
(4) (5) (6) 7

1

2 3 4
(4) (5) (6) 7

1 1

1

( ),
2! 3! 4! 5! 6!

( ),
2! 3! 4! 5! 6!

( ),
2! 3! 4!

i i i i i i i i

i i i i i i i i

i i i i i i i

i

h h h h h
y y hy y y y y y O h

h h h h h
y y hy y y y y y O h

h h h
M y y hy y y y O h

M





 



         

         

        

2 3 4
(4) (5) (6) 7

1 ( ),
2! 3! 4!

i i i i i i

h h h
y y hy y y y O h










         


                              (27) 

The local truncation error ( )iT h obtain from Eq. (16) as  

                                  1 1
1 12

2
( ) ( ) 2i i i

i i i i

y y y
T h M M M

h
  

 

 
                                          (28) 

Substituting the series of 1iy   and 1iM   from (26) into (27) and collecting like terms gives  

                                  ( )iT h =
2 (4) 41

(1 2( )) ( ) ( )
12

i iy h y O h                                             (29) 

But from the values of  
1

6
   and 

1
,

3
   Eq. (29) becomes  

                    ( )iT h =
2 (4) 41
( ) ( )

12
ih y O h  , 

which implies 

                                         
2

( ) ,iT h Ch                                                                                      (30) 

where  
(4)1

.
12

iC y  

This establishes that the developed method is second order accurate or its order of convergence 

is O(
2h ). 

To treat the boundary condition we used forward finite difference formula for 0i   and 

backward difference formula for i N respectively for the first derivative term.  

That is, for 0,i  from Eq. (2), we have  
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1 1 1 0 1 0

1 0
1 0 1

(0) (0)

                                 

y y p y y p

y y
y p

h

        

 
    

 

 

                                     1 1
1 0 1y y p

h h

    
     

 
                                                                     (31) 

Similarly, for ,i N from Eq. (2), we have 

2 2 2 2

1
2 2

( ) ( )

                                 

N N

N N
N

y N y N q y y q

y y
y q

h



      

 
   

 

 

                                     2 2
1 2N Ny y q

h h


  
      

 
                                                                (32) 

Thefore, the problem in Eq. (1) with given boundary condition in Eq. (2), can be solved using the 

scheme Eqs. (26), (31) and (32) which forms N N system of algebraic equations. 

4.4. Convergence Analysis 

Local truncation error refers to the differences between the original differential equation and its 

finite difference approximation at a mesh points. Finite difference scheme is called consistent if 

the limit of truncation error ( ( ))iT h is equal to zero as the mesh size h goes to zero. Hence, the 

proposed method in (26) with local truncation error in Eq. (30) satisfy the definition of 

consistency as  

                             2

0 0
lim ( ) lim 0i
h h

T h Ch
 

                                                                                     (33) 

 Thus, the proposed scheme is consistent.        

       

4.5. Stability Analysis 

Consider the developed scheme in (26)  

                          1 1 ,i i i i i i iE y F y G y H                                                                                     (34) 

where, the coefficients iE , iF  and iG  are as in Eq. (26).  
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If we multiply both sides of (26) by 
2h and consider the value of iE , iF  and iG  for sufficiently 

small h, we get  

                           iE = iG = i , iF = 2 i ,                                                                                     (35) 

Considering Eq. (35) in to Eq. (26) the one which is multiplied by 
2h the developed scheme can 

be written in matrix form  

                          AY=B,                                                                                                                (36) 

where the matrixes   

 A=       

2 0 0

2 0

0 0

0 2

i i

i i i

i

i i

 

  



 

 
 


 
  
 
 
    

,Y=

1

2

2

1

N

N

y

y

y

y





 
 
 
 
 
 
  

and B=

2

1 1 0

2

2

2

2

2

1 1

N

N N N

h H E y

h H

h H

h H G y



 

 
 
 
 
 
 
  

 

   

Matrix A is a tri-diagonal matrix with size (N-1)*(N-1). Matrix A is irreducible if its co-diagonal 

s contains non-zero elements only. The co-diagonals contains  iE  and .iG  It is clearly seen that, 

for sufficiently small h and 0 and 0,  for 1,2,3,..., 1.i iE F i N    Hence, A is irreducible. 

Again we can see that all | |,  | |,  | | 0,  for 1,2,3,..., 1i i iE F G i N    and in each row of A, the 

modulus of diagonal element is greater than or equal to the sum of modulus of the two co-

diagonal elements i.e.,
iF

 


 iE +
iG .This implies that A is diagonally dominant .Under this 

condition the Thomas Algorithm is stable for sufficiently small h. 

The eigenvalues of a tri-diagonal matrix A are given by  

                      
 2 2 ( )( ) cos , 1(1) 1.s i i i

s
s N

N


                                                      (37) 

Hence, the eigenvalue of matrix A in Eq.(35)are  

                                 2
2 2 cos 2 (1 cos ), 1(1) 1.s i i i

s s
s N

N N

 
                       (38) 

But from trigonometric identity, we have  21 cos 2sin .
s s

N N

 
   

Thus, the eigenvalues of A becomes 
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                                 2 22 (2sin ) 4 sin 4
2

s i i i

s s

N N

 
                                                (39) 

A finite difference method for the boundary value problems is stable if A is non-singular and 

1 ,A C  for 
0,0 h h  where, C and

0,h  are two constants that are independent of h . 

Since A is real and symmetric it follows that 1A  is also real and symmetric so that, its 

eigenvalue are real and given by
1

s
. 

Hence, as Siraj et al.(2019), the stability condition of the method will be satisfied when; 

1 1 1 1
,

4 4s i i

A C
  

 
    where  C is in dependentof  h . 

Thus, the developed scheme in Eq.(26) is stable. A consistent and stable finite difference method 

is convergent by Smith (1985). Hence, as we have shown above, the proposed method is 

satisfying both the criteria of consistency and stability which are equivalent to convergence of 

the method.  

4.6 Numerical Example and Results 

To validate the established theoretical results, we perform numerical experiments using the 

model problem of the form in Eqs. (1)-(2). 

Having h

j jy y  (the approx. solution obtained via the present method) for different values of h  

and ,
 
since the exact solution is not available; the maximum errors (denoted by hE ) are 

evaluated using the formula given by the double mesh principle  

2

2
0

: max .h h h

j j
j N

E y y
 

   

Further, we will tabulate the errors 

0 1
max .h hE E
 

 


 

The numerical rates of convergence are computed using the formula  

2

2: log

h

h

E

Ehr

 
 
 
  
 





  

and the numerical rate of “ -uniform convergence” is computed using 
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Example 4.1 

( ) ( ) ( ),   ,

(0) (0) 1,  (1) (1) 1,

y x y x f x x

y y y y

     

     




 

where                                     
0.7,     for  0 0.5,

( )
0.6,   for  0.5 1.

x
f x

x

 
 

    

 

Table 4.1: Maximum absolute errors and order of convergence for Example 4.1 at different 

mesh points N 

  32N   64N   128N   256N   512N   

    
410  2.0313e-02 1.0156 e-02 5.0781e-03 2.5391e-03 1.2695e-03 
810  2.0313e-02 1.0156 e-02 5.0781e-03 2.5391e-03 1.2695e-03 

1210  2.0313e-02 1.0156 e-02 5.0781e-03 2.5391e-03 1.2695e-03 
1610  2.0313e-02 1.0156 e-02 5.0781e-03 2.5391e-03 1.2695e-03 
2010  2.0313e-02 1.0156 e-02 5.0781e-03 2.5391e-03 1.2695e-03 

      
 

Table 4.2: Comparison of Maximum absolute errors and order of convergence for Example 4.1 at 

different of mesh points N 

N    64 128 256 512 1024 

Present Method     
02  1.2486e-03 6.2308e-04 3.1124e-04 1.5554e-04 7.7752e-05 

22  3.9279e-03 1.9488e-03 9.7064e-04 4.8438e-04 2.4195e-04 

42  5.3915e-03 2.6166e-03 1.2885e-03 6.3930e-04 3.1841e-04 

62  6.3219e-03 2.8548e-03 1.3488e-03 6.5460e-04 3.2234e-04 

82  8.9456e-03 3.7124e-03 1.5805e-03 7.1370e-04 3.3719e-04 

102  1.0153e-02 4.9868e-03 2.2364e-03 9.2810e-04 3.9512e-04 

122  1.0156e-02 5.0781e-03 2.5382e-03 1.2467e-03 5.5910e-04 

NE  1.0156e-02 5.0781e-03 2.5382e-03 1.2467e-03 5.5910e-04 

NR  1.0000 1.0007 1.0257 1.0257  

Chandru and Shanthi, 

(2015) 

    

02  1.1329e−02  5.5712e−03  2.6949e−03  1.2574e−03  5.3885e−04  

22  8.7403e−03  4.4761e−03  2.2085e−03  1.0406e−03  4.4812e−04  

42  2.0405e−02  1.0005e−02  4.8332e−03  2.2538e−03  9.6554e−04  
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62  2.0072e−02  1.1136e−02  6.0306e−03  3.1191e−03  1.4580e−03  

82  2.3563e−02  1.2830e−02  6.7717e−03  3.4147e−03  1.5689e−03  

102  2.5198e−02  1.3801e−02  7.3129e−03  3.6779e−03  1.6744e−03  

122  2.5658e−02  1.4128e−02  7.5359e−03  3.8225e−03  1.7536e−03  

NE  

NR  

2.5658e−02  

0.86085 

1.4128e−02  

0.90671 

7.5359e−03  

0.97927 

3.8225e−03  

1.1242 

1.7536e−03  

      
 

 

Figure 4.1: Solution plot of N = 32, 64, 128 and 52 for the Example 4.1 
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Figure 4.2: Point wise absolute error plot of N = 32, 64, 128 and 52 for the Example 4.1. 

 

Figure 4.3:  -uniform convergence with NSFDM in Log-Log scale for Example 4.2. 
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Table 4.3: Maximum absolute errors and order of convergence for Example 4.2 at different 

mesh points N 

N    32N   64N   128N   256N   512N   

    
410  8.3431e-02 4.1854e-02    2.0962e-02 1.0489e-02 5.2329e-03 
810  8.3431e-02 4.1854e-02 2.0962e-02 1.0489e-02 5.2329e-03 

1210  8.3431e-02 4.1854e-02 2.0962e-02  1.0489e-02 5.2329e-03 
1610  8.3431e-02 4.1854e-02 2.0962e-02 1.0489e-02 5.2329e-03 
2010  8.3431e-02 4.1854e-02 2.0962e-02 1.0489e-02 5.2329e-03 
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O(1/N1)
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Table 4.4: Comparison of Maximum absolute errors and order of convergence for Example 4.2 at number 

of mesh points N 

N    64 128 256 512 1024 

Present Method     
02  2.4822e-03 1.2368e-03 6.1735e-04 3.0841e-04 1.5414e-04 

22  9.2976e-03 4.5948e-03 2.2838e-03 1.1385e-03 5.6841e-04 

42  1.6317e-02 7.9207e-03 3.9029e-03 1.9371e-03 9.6494e-04 

62  1.9827e-02 8.5708e-03 3.9917e-03 1.9270e-03 9.4663e-04 

82  3.2254e-02 1.2786e-02 4.9464e-03 2.1290e-03 9.8941e-04 

102  4.1526e-02 1.9138e-02 8.0742e-03 3.2014e-03 1.2359e-03 

122  4.1854e-02 2.0960e-02 1.0408e-02 4.7906e-03 2.0192e-03 

NE  4.1854e-02 2.0960e-02 1.0408e-02 4.7906e-03 2.0192e-03 

NR  0.9977 1.0099 1.1194 1.2464  

 Chandru and Shanthi, (2015)  
02  6.6163e−02  3.2658e−02  1.5827e−02  7.3916e−03  3.1691e−03  

22  2.1351e−01  1.0537e−01  5.1051e−02  2.3838e−02  1.0219e−02  

42  4.7760e−01  2.4152e−01  1.1853e−01  5.5717e−02  2.3969e−02  

62  9.0232e−01  5.4579e−01  3.0795e−01  1.6300e−01  7.7457e−02  

82  9.4993e−01  5.7117e−01  3.2238e−01  1.7024e−01  8.0147e−02  

102  9.6347e−01  5.7862e−01  3.2680e−01  1.7253e−01  8.1223e−02  

122  9.6698e−01  5.8056e−01  3.2795e−01  1.7313e−01  8.1501e−02  

NE  

NR  

9.6698e−01  

0.73604 

5.8056e−01  

0.82399 

3.2795e−01  

0.92161 

1.7313e−01  

1.08700 

8.1501e−02  
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Figure 4.4: Solution plot of N = 32, 64, 128 and 52 for the Example 4.2. 

 

Figure: 4.5 Point wise absolute error plot of N = 32, 64, 128 and 52 for the Example 4.2. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-12

-10

-8

-6

-4

-2

0

x

N
u
m

e
ri
c
a
l 
s
o
lu

ti
o
n

 

 

N=32

N=64

N=128

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

x

E
rr

o
r

 

 

N=32

N=64

N=128



 

 

29 

 

 

Figure 4.6:  -uniform convergence with NSFDM in Log-Log scale for Example 4.2. 

4.4. Discussion  

The numerical results are tabulated in terms of maximum absolute errors, numerical rate of 

convergence and uniform errors (see Tables 4.1-4.4) and compared with the results of the 

previously developed numerical methods existing in the literature (Table 4.2 and 4.4). Further, 

the  -uniform convergence of the method is shown by the log-log plot of the  -uniform error 

(Figure 4.2 and 4.4) and the numerical solution for various values of N  and   are given (see 

Figure 4.2-4.4). Unlike other fitted finite difference methods constructed in standard ways, the 

method that we presented in this thesis is relatively simple to construct. 
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                                          CHAPTER FIVE  

CONCLUSION AND SCOPE FOR FUTURE WORK  

5.1 Conclusion  

This study introduces uniformly convergent numerical method based on fitted non-polynomial 

cubic spline method for solving singularly perturbed second-order ODEs of Robin type BVPs 

with discontinuous source term. Due to discontinuity in the source term there is an interior layer 

occurring. To fit the interior and boundary layer a suitable fitted operator method on uniform 

mesh is constructed. The behavior of the continuous solution of the problem is studied and 

shown that it satisfies the continuous stability estimate and the derivatives of the solution are also 

bounded. The numerical scheme is developed on uniform mesh. The Robin type BVPs is treated 

using numerical finite difference techniques; and the results are compared accordingly. The 

stability of the developed scheme is established and its uniform convergence is proved. To 

validate the applicability of the method, two model problems are considered for numerical 

experimentation for different values of the perturbation parameter and mesh points. 

5.2. Scope of the Future Work   

In this thesis, fitted cubic spline method for solving singularly perturbed second-order ODEs of 

Robin type BVPs with discontinuous source term is introduced. Hence, the scheme proposed in 

this thesis can also be extended to higher order fitted finite difference method for  solving  

singularly  perturbed  robin  type  boundary  value  problems with  discontinuous  source term. 
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