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Abstract: Room temperature (RT) synthesis of the ternary cesium lead bromide CsPbBr3 quantum
dots with oleic acid and oleylamine ligands was developed by Zeng and coworkers in 2016. In
their works, the supersaturated recrystallization (SR) was adopted as a processing method without
requiring inert gas and high-temperature injection. However, the oleic acid ligand for haloplumbate
is known to be relatively unstable. Hence, in this work, we employed the eco-friendly olive oil to
replace the oleic acid portion for the SR process at RT. Resultantly, we found that the cube-shaped
nanocrystal has a size of ~40–42 nm and an optical bandgap of ~2.3 eV independent of the surface
ligands, but the photoluminescence lifetime (τav) and crystal packing are dependent on the ligand
species, e.g., τav = 3.228 ns (olive oil and oleylamine; here less ordered) vs. 1.167 ns (oleic acid and
oleylamine). Importantly, we explain the SR mechanism from the viewpoint of the classical LaMer
model combined with the solvent engineering technique in details.

Keywords: perovskite; supersaturated recrystallization; CsPbBr3; olive oil; LaMer model; nucleation
and growth; solvent engineering; nanocrystals; quantum dot; ligand

1. Introduction

Halide perovskites (HPs) have the general chemical structure of ABX3, where A
(methylammonium (MA) CH3NH3

+, formamidinium (FA) CH(NH2)2
+, methylhydrazinium

CH3(NH2)2
+, aziridinium (CH2)2NH2

+ and cesium Cs+) and B (lead Pb2+, tin Sn2+, and
germanium Ge2+) are cations, and X (chlorine Cl−, bromine Br−, and iodine I−) is an
anion [1–7]. When these HPs serve as a semiconducting layer for the electronic and op-
toelectronic devices, they share some common properties such as defect tolerance, large
absorption coefficient, high dielectric constant, low exciton binding energy, long charge
carrier diffusion length, high charge mobility, and tunable bandgap [8–13]. Hence, the state-
of-the-art devices show the power conversion efficiency of ~26% for photovoltaic (PV) cells,
and more than 20% quantum efficiency for light-emitting diodes (LEDs) [4,14–17]. Further-
more, based on the excellent aforementioned properties, HPs have been applied to lasers,
photodetectors, X-ray/γ-ray detectors, medical imaging devices, biosensors, photocatalysis,
and luminescence solar concentrators [18–25]. However, the organic–inorganic hybrid HPs
have an intrinsic problem in thermal stability originating from the organic cations such as
MA and FA in the perovskite structure [26,27]. For example, MABr decomposes at around
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250–350 ◦C [27]. Hence, to overcome this thermal instability, all-inorganic HPs such as
CsPbX3 (X = Cl, Br, and I) have been employed for perovskite electronics [27–34].

However, it is notable that all-inorganic Cs-based perovskites with a wide bandgap
(Eg > 1.65 eV) [35,36] also have some stability issues. First, the Goldschmidt tolerance

factor (t) is (rA + rX)/
{√

2 · (rB + rX)
}

, in which rA, rB, and rX are the radius of cation
A, cation B, and anion X, respectively [37]. In the case of CsPbCl3, CsPbBr3, and CsPbI3,
each tolerance factor is 0.87, 0.816, and 0.805, respectively [38,39]. Considering that the
cubic phase could be stable in the range of 0.813 ≤ t ≤ 1.107 [37], CsPbI3 is structurally
unstable among the cesium lead halides. Second, the Cs-based perovskites undergo a
multiple polymorph transition, such as orthorhombic, tetragonal, and cubic, depending
on the temperature and composition [40]. To be a thermodynamically stable cubic phase
with high symmetry, the perovskite should stay at the temperature more than 47 ◦C for
CsPbCl3, 130 ◦C for CsPbBr3, and 300 ◦C for CsPbI3, indicating that CsPbI3 is the most
challenging compound in spite of its promising energy bandgap ~1.73 eV [41–44]. Note
that CsPbCl3 and CsPbBr3 each have a bandgap of ~3.03 eV and ~2.25 eV, respectively [45].
Furthermore, it is notable that CsPbI3 undergoes a phase transition from the black γ-phase
to the yellow δ-phase (i.e., a non-perovskite structure with Eg~2.82 eV), resulting in an
undesirable compound for perovskite electronics [46]. Third, according to Li and coworkers,
the thermal stability of Cs-based perovskites is in the sequence of CsPbCl3 > CsPbBr3 >
CsPbI3. This is because the structural change was observed at 500 ◦C for CsPbCl3, 400 ◦C
for CsPbBr3, and 200 ◦C for CsPbI3, respectively, which is based on in situ X-ray diffraction
experiments as a function of temperature in ambient conditions [47,48]. Hence, we notice
that CsPbCl3 and CsPbBr3 are superior to CsPbI3 from the stability point of view. In this
work, we may focus on the green-emitting CsPbBr3 perovskite semiconductor [49,50].

In 1958, Møller reported the structure and photoconductivity of CsPbX3 crystals
(X = Cl, Br, and I) [28]. Then, after more than five decades, in 2015, Kovalenko and coworker
invented a hot injection (HI) method for synthesizing CsPbX3 (X = halide or its mixture)
colloidal quantum dot materials with oleic acid (OA) and oleylamine (OAm) surface
ligands [51]. Then, after one year, Zeng and coworker invented another method called
supersaturated recrystallization (SR) for synthesizing CsPbX3 nanocrystals (NCs) with OA
and OAm at room temperature [52]. In 2019, Shi and coworker tried to replace OA with an
edible ‘olive oil (OO)’ using the HI method [53]. Then recently, Jing and coworker tried
to replace OA with another ligand called 4,4′-Azobis(4-cyanovalericacid) (CA) at room
temperature because OA and OAm can be detached easily from the surface of CsPbX3 [54].
On the other hand, in 2022, Ray and coworkers proposed a new technique to synthesize
CsPbX3 (X = I/Br) by modifying the ligand chemistry using olive oil [55].

For fabricating a relatively more stable cubic phase of CsPbX3, there are three methods:
(1) the synthesis of NCs with high surface energies, (2) surface ligand engineering, and
(2) composition engineering [51–55]. These methods have been commonly utilized for syn-
thesizing CsPbX3 QDs. Hence, the colloidal CsPbX3 NCs have several strong advantages
compared to its bulk counterparts. First, based on quantum size and confinement effect, the
energy bandgap of QD materials is easily tunable resulting in the full-color spectrum cover-
age. Second, the NC–ligand complexes can afford versatile solution processes via colloidal
chemistry. Third, the perovskite NCs can enhance their optical properties, resulting in a
high photoluminescence quantum yield (PLQY) and a narrow full width at half maximum
(FWHM) for color purity, which is desirable for lighting and display applications [51,52].

In this study, we tried to replace OA with OO to synthesize CsPbBr3 NCs at room
temperature for which we adopted the SR method. To the best of authors’ knowledge, in
the past, the OO ligand was tested only by the HI method [53], although OO is promising
as a surface ligand for the mass production process in future. Hence, in this work, we
employed this OO ligand for synthesis of CsPbBr3 NCs at room temperature. Note that SR
is a type of ligand-assisted reprecipitation (LARP) technique, affording a simple, low cost,
and a large production capability in ambient conditions. Furthermore, basically, SR is an
antisolvent-mediated solution process, resulting in the nucleation and growth of perovskite
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NCs. Hence, the classical LaMer model [56,57] and solvent engineering (SE) [58,59] should
be very important for addressing the SR mechanism in the synthesis of CsPbBr3 NCs at
room temperature.

2. Materials and Methods
2.1. Chemicals

Lead bromide (PbBr2, 99.0%, AR chemicals, Delhi, India), cesium bromide (CsBr, 99.9%,
Sigma-Aldrich, Darmstadt, Germany), oleic acid (OA, 98%, Sigma-Aldrich, Darmstadt,
Germany), oleylamine (OAm, technical grade 70%, Sigma-Aldrich, Darmstadt, Germany),
olive oil (OO, Nice, Kochi, India), hexane (≥97.5%, Sigma-Aldrich, Darmstadt, Germany),
N,N-dimethylformamide (DMF, 99.5%, AR chemicals, Delhi, India), and toluene (≥99.5%,
AR chemicals, Delhi, India) were used in this experiment. All chemicals were used without
further purification.

2.2. Synthesis of CsPbBr3 Nanocrystals

In the SR method [52], the perovskite precursors and ligands, CsBr (0.2 mmol, 43 mg),
PbBr2 (0.2 mmol, 73 mg), OA or OO (0.5 mL), and 0.25 mL of oleylamine, were dissolved
into 5 mL of a polar DMF solvent and stirred using magnetic stirrers at RT for two hours.
Then, 1 mL of the perovskite precursor solution was titrated into 10 mL of a nonpolar
toluene antisolvent and stirred for 60 s. Then, the CsPbBr3 NC dispersion exhibited a
green-light emission under 365 nm UV illuminations, confirming that the reaction was
successful through the SR method. Then, this colloidal dispersion was transferred to a
centrifuge tube for centrifugations, and it was centrifuged at 8000 rpm for 10 min. The
supernatant was discarded, and the resulting precipitate was re-dispersed in the nonpolar
hexane. Then, the final CsPbBr3 sample was dried under a vacuum oven at 60 ◦C overnight.
Finally, the CsPbBr3 samples were kept for further characterization at RT.

2.3. Characterization

The structural properties of CsPbBr3 (OA and OAm) and CsPbBr3 (OO and OAm)
were determined by the X-ray diffraction (XRD) measurements measured using the Rigaku
mini flex-300/600 diffractometer (Tokyo, Japan). The irradiation used CuKα, λ = 1.5406 Å at
40 kV and 15 mA for the XRD analysis. The CsPbBr3 NC’s size and shape were determined
by using the high-resolution transmission electron microscopy (HR-TEM) (Model: JEOL,
JEM-2100) with an operating voltage of 200 kV. The optical absorption was characterized
by using the Ultraviolet-visible (UV–vis) absorption spectroscopy (SHIMADZU UV-2600,
Kyoto, Japan), whereas the photoluminescence (PL) spectra were measured using a spec-
trophotometer (SHIMADZU RF-6000, Kyoto, Japan) at the excitation wavelength of 375 nm.
The Fourier transform infrared spectroscopy (FT-IR) analysis was performed by using the
PerkinElmer Spectrum Two FT-IR Spectrometer. For this purpose, the attenuated total
reflection (ATR) was employed as a sampling technique to record the FT-IR spectra of the
drop-cast CsPbBr3 thin film in the range 4000–400 cm−1 with resolution of 4 cm−1. Here,
for the drop-cast thin films, the glass substrate was washed in detergent soap, followed by
ultra-sonication using distilled water, acetone, and isopropanol, respectively, for 15 min
per each process. Then, the cleaned substrate was dried at 80 ◦C for 1 h in vacuum oven
and subsequently cooled down at room temperature. The prepared sample solution (10 mg
perovskite precursors in 1 mL of toluene) was drop cast on the clean glass substrate and
dried in ambient conditions. The PL decay curves were recorded by using a time-correlated
single photon counting (TCSPC) (Model: Fluorolog 3 TCSPC, Horiba, Irvine, CA, USA).

2.4. Computational Methods

The electronic band structures of the CsPbBr3 unit cell were calculated using the
Cambridge Serial Total Energy Package (CASTEP, Materials Studio 2017) software with
the density functional theory. The Perdew–Burke–Ernzerhof (PBE) parametrization of
the General Gradient Approximation (GGA) was used to describe the exchange correla-
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tion functional. The unit cell in the Brillouin zone was applied to evaluate the electronic
band structures. Energy of 5 × 10−5 eV/atom, maximum force of 0.01 eV/Å, maximum
displacement of 5 × 10−4 Å, and maximum stress of 0.02 GPa were used for all geome-
try optimization.

3. Results and Discussion

Figure 1a shows the orthorhombic structure (space group, Pbnm) of CsPbBr3 crystal.
However, when temperature increased, CsPbBr3 undergoes a phase transition from or-
thorhombic to tetragonal (P4/mbm) at 88 ◦C and from tetragonal to cubic (Pm3m) at 130 ◦C
through a tiny rearrangement of the unit cell atoms [60,61]. On the other hand, in the case of
NCs, the unit cell structure could be affected not only by crystal size/shape, but also by the
Pb2+/ligand ratio [34]. For example, the cubic phase was observed at RT if the crystal size is
in nanoscale, indicating the metastable state of NCs. In the case of the electronic structures
of CsPbBr3 unit cell, the information could be found in the Supplementary Materials (SM),
Figure S1, displaying that the bandgap (Eg) is reduced with from 2.40 eV (cubic) to 2.31 eV
(orthorhombic) via 2.37 eV (tetragonal).
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Figure 2 shows the chemical structure of (a) OO, (b) OAm, and (c) DMF and toluene,
among which both organic OO and OAm surface ligands were employed as a mixed ligand
for the synthesis of CsPbBr3 at RT using the SR process [52]. As shown in Figure 2a, the OO’s
glycerol fractions (~98% of total OO) are composed of oleic acid, linoleic acid, palmitic acid,
and palmitoleic acid, but it also contains small amounts of non-glycerol fraction (~1–2% of
the total OO by weight), such as biophenols and triterpenic acids [62]. Here, because of the
conformational freedom (e.g., a chain folding) of the C-C single-bond rotation, the high
carbon ligand may undergo a chain folding in a typical solvent medium, DMF. Importantly,
it is noteworthy that the compositional engineering (or mixing strategy) has been commonly
used for perovskite electronics for enhancing stability, e.g., cation mixtures (MA+/FA+),
metal ion mixtures (Pb2+/Sn2+ or Ge2+/Sn2+), halogen mixtures (Cl−/Br−/I−), perovskite
dimensional mixtures (2D/3D), etc., which resulting in the enhancement of stability of
materials and devices [62–67]. In the same vein, when we use the edible OO as a surface
ligand, it might be useful in stability with a guaranteed benefit of eco-friendliness, which is
a desirable characteristic for a mass production process in future.

Figure 3a shows the free energy change (∆G) as a function of the radius (r) when the
nucleus is assumed to be a spherical according to the LaMer model, a classical nucleation
theory [56,57]. Here, the free energy change (∆Ghom) for homogenous nucleation and that
(∆Ghet) for heterogeneous nucleation could be defined as follows,
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∆Ghom = −4
3

πr3∆Gv + 4πr2γSL (1)

∆Ghet =

{
−4

3
πr3∆Gv + 4πr2γSL

}
· (2 + cos θ)(1− cos θ)2

4
(2)

where ∆Gv is the free energy change associated with the formation of a small volume of solid,
whereas γSL is the solid/liquid interfacial free energy. Furthermore, ∆Ghet = ∆Ghom · S(θ),
where S(θ) = (2 + cos θ)(1− cos θ)2/4 is a shape factor at a wetting angle θ. According to
the LaMer model [57], when a solution is supersaturated by undercooling, a nucleus could be
formed. If this nucleus is larger than the critical size (r∗), the spontaneous growth is available
because ∆G is decreasing as shown in Figure 3a (see the blue solid line). In the case of the SR
process, a supersaturated condition is directly available when the perovskite precursor solution
(a colloidal dispersion containing bromide plumbate, PbBr2−n

n with n = 2–6) is dropped into
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the antisolvent medium, e.g., toluene with Gutmann’s number (DN) ~0.1 kcal/mol, i.e., Lewis
basicity (see Table 1 for details) [68]. Here, it is noteworthy that a nonpolar toluene with
solubility parameter, δ = 8.9 (cal/cm3)1/2 is antisolvent for the bromide plumbate but it is still
miscible with the polar DMF solvent (δ = 12.1 (cal/cm3)1/2) [69], indicating that the perovskite
precursor ions (Cs+, Pb2+, Br−) will be directly exposed to the antisolvent toluene molecules,
resulting in the nucleation and growth of perovskite NCs as explained through the critical
point (r*–G*) in the LaMer model. However, it is notable that in the case of SR process, the
supersaturation was reached simply by adding the precursor solution into the antisolvent
(not by undercooling like in the LaMer model). Interestingly, the SR process is similar to the
well-known Solvent Engineering (SE) (i.e., one-step antisolvent method) in the sense that the
wet precursor solution is directly exposed to the antisolvent molecules [58,59]. However, the
difference is that the SE method is processed during the spin-coating step by dispensing the
antisolvent on the top of a wet precursor solution. Furthermore, SE allows for the formation
of intermediate phase when a polar solvent DMSO is employed, whereas SR may not allow
for it because the colloidal dispersion may undergo a direct crystallization (at least without
a co-solvent such as DMSO). Importantly, the SR process corresponds to the heterogeneous
nucleation and growth of CsPbBr3 perovskite because the nanoscale crystallization was
processed through the surface of haloplumbate dispersed in the DMF medium. Recall that
the perovskite precursor solution is a typical colloidal dispersion [70], i.e., haloplumbate is
dispersed in a solvent medium, herein DMF with DN = 26.6 kcal/mol. In the case of Br-, its
DN is 33.7 kcal/mol [71], indicating that Pb2+ (Lewis acid) may have a stronger coordination
bonding with Br− ions (Lewis base) than DMF to form the acid–base adducts in spite that DMF
is a good solvent for the perovskite precursor materials. See Figure S2 in the Supplementary
Materials for the vials containing CsPbBr3 NCs in the supersaturated solution/dispersion.
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Table 1. Gutmann’s solvent donor number (DN), solubility parameter (δ), dielectric constant (ε),
molar mass, density, and boiling point (b.p.), and the chemical structures of solvents.

Solvent DN
(kcal/mol)

δ 1

(cal/cm3)1/2 ε
Molar Mass

(g/mol)
Density
(g/cm3)

b.p.
(◦C)

Chemical
Structure

DMF 26.6 12.1 36.1 70.095 0.948 153 C3H7NO

Toluene 0.1 8.9 2.38 92.140 0.867 111 C6H5CH3

1 In MKS unit, the δ value is 24. 8 MPa1/2 for DMF and 18.2 MPa1/2 for toluene, respectively.
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Figure 4a,b show the experimental XRD patterns for the drop-cast CsPbBr3 thin film on
the glass substrate depending on the surface ligand species: (Figure 4a) OA and OAm and
(Figure 4b) OO and OAm, whereas Figure 4c,d shows the XRD patterns for (Figure 4c) cubic
and (Figure 4d) orthorhombic based on Joint Committee on Powder Diffraction Standards
(JCPDS). As shown in Figure 4a–c, the location of XRD peaks such as (100), (110), and (200)
are more corresponding to that of cubic (JCPDS: PDF#96-153-0682: space group Pm3m)
instead of orthorhombic in spite that it was synthesized at RT [29,55,72,73]. Note that the
lattice constant is 5.6050 Å based on the above JCPDS data, which was confirmed by the
d-spacing of ~5.478 Å or 5.418 Å = λ/(2 · sin θ) at θ = 8.08◦(OA) or 8.17◦ (OO), respectively,
when the X-ray wavelength (λ) is 1.5406 Å. Probably, the CsPbBr3 NC may prefer to exist
in cubic phase due to its high surface energy and capping ligand effects. Furthermore,
all the drop-cast CsPbBr3 nanocrystalline thin films on the glass substrate display two
intense peaks at 2θ = 16◦ and 32◦, corresponding to (100) and (200) crystallographic planes,
respectively, indicating that there is orientational order to the (100) direction. However,
when the OO and OAm ligands were incorporated as a ligand system for CsPbBr3, the
additional (110) peak is clearly observed, indicating that the mixed ligand system by OO’s
glycerol fraction makes the orientational order be reduced, resulting in a partial amorphous
halo (see the baseline shape centered around (110) peak). However, when we estimated the
crystallite size (t) by Scherrer equation (Equation (3)), it was in the range of ~40–42 nm for
all the samples (Table 2).

t =
0.9 · λ

B · cos θ
(3)

where λ (= 0.154 nm) is the X-ray wavelength, and B is the full width at half maximum (FWHM)
at the angle θ. Here, it is noteworthy is that the estimated crystallite size is a direct particle size
of this single crystal in nanoscale, which will be further addressed in the below section.Micromachines 2023, 14, x FOR PEER REVIEW 8 of 15 
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Table 2. Crystallite size (t) of CsPbBr3 at the (200) crystallographic plane. Here, β denotes a full
width at half maximum (FWHM).

CsPbBr3 Nanocrystals

Crystal Planes 2θ (◦) θ (◦) β (Radian) t (nm)

Oleic Acid
(OA)

(100) 16.15 8.08 0.003323 42
(200) 31.65 15.83 0.003641 40

Olive Oil
(OO)

(100) 16.33 8.17 0.003438 41
(200) 31.80 15.90 0.003438 42

Figure 5 shows HR-TEM images for CsPbBr3 depending on the surface ligand system.
Figure 5a,b show the case of OA and OAm, whereas Figure 5c,d show the case of OO and
OAm. As shown in Figure 5, the TEM images show roughly a nano cubic, which is in line
with the XRD data exhibiting the cubic structure.
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Figure 5. HR-TEM images of CsPbBr3 nanocrystals (nano cubic) when the ligand was oleic acid and
oleylamine (a,b) and olive oil and oleylamine (c,d).

Figure 6 shows (a) the UV-vis absorption and (b) the PL emission spectra for the
two different colloidal dispersions containing CsPbBr3 NCs depending on the ligand
species. Here, it is noteworthy that the CsPbBr3 perovskite is a direct semiconductor. In
addition, the synthesized CsPbBr3 NCs do not display any grain boundary in Figure 5,
indicating a single crystalline nature in nanoscale although there might be some surface
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defects. Therefore, the CsPbBr3 NCs are different from the disordered conjugated polymers
showing a localized state. For disordered system, Mott defined a mobility edge between
localized and delocalized states [74]. However, in the case of CsPbBr3 NCs, the sharp
absorption edge is expected, affording the decision of optical bandgap by using a simple
tangential slope based on the equation, E = hc/λ, where E is energy, h is Planck’s constant,
c is the speed of light, and λ is the wavelength of light. Therefore, according to the UV-Vis
absorption edge (530 nm vs. 533 nm) in Figure 6a, the corresponding optical bandgap
(Eg) is 2.34 eV = 1240/530 (for OA and OAm) and 2.33 eV = 1240/533 (for OO and OAm),
respectively. See Equation (4) for the conversion factor, 1240, between the energy (bandgap)
and the wavelength (absorption edge).

λ[nm] =
hc
E

=

(
6.62607× 10−34 J× s

)
×
(
3× 108 m/s

)(
10−9 nm/1 m

)
Eg(eV)×

(
1.60218× 10−19 J/1 eV

) = 1240
1

E[eV]
(4)
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Figure 6. (a) UV-Vis absorbance spectra of the CsPbBr3 nanocrystal dispersion depending on the ligand
species. Here, λ = 530 nm corresponds to Eg ≈ 2.34 eV (oleic acid and oleylamine) and λ = 533 nm
corresponds to Eg≈ 2.33 eV (olive oil and oleylamine). (b) PL spectra of CsPbBr3 nanocrystals depending
on the ligand species.

This result indicates that the nanoparticle size might be slightly larger in CsPbBr3
synthesized with OO and OAm. This result is in line with the estimated crystallite size
trend according to the sharpest peak at the (200) crystallographic plane in Figure 4a and
Table 2. On the other hand, the PL spectra exhibit the PL peak at 517 nm for CsPbBr3 with
oleic acid and oleylamine and at 526 nm for CsPbBr3 with OO and OAm. Here, the shift
of PL peak from 517 nm to 526 nm (a red shift) indicates that the effective crystal size (or
aggregation) of CsPbBr3 NCs is slightly larger in the colloidal dispersion state when OO
and OAm were employed as the surface ligands, although the apparent size (Table 2) is
similar for both ligand systems in the solid state. Furthermore, it is believed that the surface
state of NCs is different depending on the NC–ligand complexations. Hence, when OO and
OAm were complexed with CsPbBr3 NCs, there might be more surface defects, resulting in
more non-radiative recombination (i.e., smaller PL intensity) in Figure 6b. Furthermore,
FWHM is 21 nm for the former, but 19 nm for the latter. According to our finding, the
narrow emission spectra were obtained below 25 nm, which falls in the required range of
12–42 nm [51] for the optoelectronic applications such as lighting and display technology.

Figure 7a shows PL decay curve for the colloidal CsPbBr3 NC dispersion as a function
of ligand species. The average lifetime of electron–hole pairs (Wannier–Mott excitons) is
1.167 ns for CsPbBr3 with OA and OAm, whereas it is 3.228 ns for CsPbBr3 with OO and
OAm, indicating that a slightly larger CsPbBr3 with OO and OAm displays a longer life time
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of excitons. Figure 7b shows the FT-IR spectra for the drop-cast CsPbBr3 nanocrystalline thin
film. First of all, the IR spectrum for CsPbBr3 with OA and OAm is relatively simpler than
that for CsPbBr3 with OO and OAm. Second, the FT-IR spectrum for OO and OAm shows a
high absorption at 3020–2850 cm−1, whereas the corresponding spectrum for OA and OAm
is very weak at those wavenumbers, which correspond to the symmetric and asymmetric
C-H stretching modes [53,54]. The functional groups of other organic components can be
attributed to the absorption peaks at 3781 cm−1 [54] and 3510 cm−1 [53], which originate
from the N-H characteristic absorption. The IR peaks at around 1800–1600 cm−1 are related
to carbonyl (C=O) mode of stretching vibration which can be shift to lower wavenumber
due to any perturbation. The shift of wavenumber may be ascribed to the presence of
hydrogen bonding. The peaks at 1538 cm−1 and 1462 cm−1 are related to C-CH3 asymmetric
bending. On the other hand, the peaks at 1377 cm−1 and 1262 cm−1 correspond to C-
CH3 symmetric bending vibration and C-N stretching vibration, respectively. Absorption
peaks in the range of 1000–500 cm−1 indicate that the existence of aromatic bending
vibrations [75], which might originate from OO components, trapped toluene (C6H5CH3),
and/or aromatic impurities in samples. The peak at 477–447 cm−1 is associated with
CsPbBr3–OAm complexes [76].
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4. Conclusions

In this work, we demonstrated the usefulness of olive oil and oleylamine as the surface
ligand system (vs. the typical oleic acid and oleylamine mixtures) for the synthesis of
CsPbBr3 nanocrystals at room temperature. For this purpose, the supersaturated recrys-
tallization process was employed, enabling a direct synthesis of perovskite nanocrystals.
First, according to XRD, the crystallite size is ~40–42 nm in both conditions (oleic acid
and oleylamine vs. olive oil and oleylamine), whereas the latter system allows for a less
orientational order than the former by showing a partial amorphous halo. The TEM im-
ages confirmed that the CsPbBr3 nanocrystals have a cuboid shape in line with XRD data
exhibiting a cubic phase. The UV-Vis absorption data exhibited that the optical bandgap
of CsPbBr3 is about 2.3 eV in both ligand systems. The PL emission spectra indicated that
FWHM is about 19 nm (olive oil and oleylamine) vs. 21 nm (oleic acid and oleylamine),
which falls into the desirable FWHM values, i.e., ~12–42 nm for technical applications.
Finally, the average PL lifetime is 3.228 ns for olive oil and oleylamine and 1.167 ns for oleic
acid and oleylamine. Future work may include the application of CsPbBr3 nanocrystals to
the biosensors and optoelectronic devices.
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Supplementary Materials: The following are available online at: https://www.mdpi.com/article/
10.3390/mi14071332/s1, Figure S1: The electronic structures of CsPbBr3 unit cells displaying poly-
morphism: (a) orthorhombic, (b) tetragonal, and (c) cubic phase. Here, the bandgap energy (Eg)
of each unit cell is 2.31 eV for orthorhombic, 2.37 eV for tetragonal, and 2.40 eV for cubic phase,
respectively. Figure S2: Vials containing a CsPbBr3 colloidal dispersion depending on surface ligands:
(a) oleic acid and oleylamine—a normal photo, (b) oleic acid and oleylamine—under 365 nm UV
light, (c) olive oil and oleylamine—a normal photo, and (d) olive oil and oleylamine—under 365 nm
UV light. Hence, CsPbBr3 nanocrystals can serve as a green-light emitter.
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