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Abstract

A named entity (NE) is a word or a phrase that clearly identifies one item from a set

of other items that have similar features. The term named entity refers to organization,

person, and location names in a text. Named entity recognition (NER) is the process of

locating and classifying named entities in text into predefined entity categories.

The proposed approach to Gamo language entity recognition involves four major layered

processes. These are corpus collection and dataset development, distributed representa-

tion, context encoder, and tag decoder layer, all the layered processes are interconnected

and arranged in a way that an output of a current process is an input to the next pro-

cess. For distributed representation character and word level embedding used, context

encoding BiLSTM was used, and decoding CRF was used.

NER for GL with deep learning based on features that extracted from word-level embed-

ding alone achieved performance of accuracy 93.94%, precision 73.96%, recall 68.62% and

F1-Score 71.19%, and word and character level embedding together achieved performance

accuracy 94.59%, precision 76.15%, recall 72.49%, F1-Score 74.28%. So the second model

improves precision 2.19%, recall 3.87% and F1-Score 3.09 respectively.

NER for GL with deep learning based on features that extracted with word-level embed-

ding in conjunction with character level embedding outperforms deep learning based on

feature extracted with word-level embedding.

Keyword:GLNER,Encoder, Decoder

ix



Chapter 1

Introduction

1.1 Background of Study

Named entity (NE) could be a word or phrase that identifies one item from a group of

other items with similar features[1]. The term named entity refers to an organization,

person, and location names in a text.

Named entity recognition (NER) is the process of identifying and classifying named en-

tities into predefined entity categories. The task focuses on a small set of coarse entity

types and one type per named entity, which is called the coarse-grained NER[3],[4], on

the other hand, fine-grained NER tasks[4],[5] focuses on a much larger set of entity types.

NER provides a service that can be used as a pre-processing step for a variety of down-

stream applications, such as information retrieval, question answering, machine transla-

tion, etc. Let us take a look at the application of semantic search to show the importance

of NER in supporting various applications. Semantic search refers to a collection of tech-

niques that enable search engines to understand the concepts, meaning, and intent behind

user queries[6]. About 71% of search queries contain at least one named entity[7]. Rec-

ognizing named entities in search queries would enable the engine to better understand

user intents, hence providing better search results.

1
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When incorporating named entities into the search, entity-based language models[6], con-

sider both individual terms and term sequences that have been annotated as entities (both

in documents and in queries)[8].

Several approaches have been used to develop NER system for different languages, from

dictionary lookup to deep neural networks. Traditional approaches to NER are broadly

classified into three main streams: rule-based, unsupervised learning, and feature-based

supervised learning approaches [9],[10].

The proposed research is the baseline research for the Gamo language in NLP. Unlike

other languages such as English, Spanish, German and Chinese, the Gamo language does

not have organized and structured text data, which makes it a challenging task to extract

an entity in the language. Identifying named entities from unstructured text data is a

difficult task. Identifying and classifying named entities into semantically meaningful

classes is the ultimate goal of a named entity recognition task.

In this study, we have developed a named entity recognition model for Gamo language

using deep neural networks. We considered the person, location, organization, and mis-

cellaneous to be the major entity classes in our research.

1.2 Research Motivation

Gamo language is spoken in different areas of Ethiopia with different dialects, and it has

a rich morphology. Things are getting automated nowadays, but there is no research that

has been done in this language. In the near future, an enormous amount of text data

will be introduced because of the wide use of electronic devices, to cope up with there

requires studies related to NLP tasks associated with the language.

Therefore, development of NLP applications for this language is needed to address the

emerging and current NLP challenge. In addition to these, this study is motivated by the

contribution of NER tasks to other NLP studies.
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1.3 Statement of the Problem

Since the advent of a computing system, the data has been stored in a particular format

on a disk. One of the formats is a plain text in which all aspects of things are documented,

so the amount of plain text data is getting very large. These large data presented different

challenges, such as ambiguity and unstructuredness.

Extracting relevant information from ambiguous and unstructured text is a challenging

task to do, internet search engines face such a problem.

Many of the language engineering applications such as Machine Translation, Question-

Answering systems, indexing for Information Retrieval, and Automatic Summarization

require an efficient information extraction mechanism. There is no relevant information

extraction mechanism in Gamo language text.

The proposed research will answer the research questions: what kind of existing approach

should be used for named entity recognition task for Gamo language text?

1. What data representation best suit for Gamo language text?

2. What learning approaches best suit for Gamo language text?
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1.4 Objectives of the Research

1.4.1 General Objective

The general objective of this research is developing named entity recognition model for

Gamo language with deep neural networks.

1.4.2 Specific Objectives

The general objective of this research is achieved by accomplishing the specific objectives

of the study listed below.

� Assess the structure of GL and the linguistic patterns that refer to NEs.

� Review related studies that are conducted so far in different languages.

� Propose and design Gamo NER model.

� Develop a prototype of the proposed Gamo NER model.

� Test the performance of the developed prototype with various parameters.

1.5 Research Methodology

Different methods have been used for the successful completion of this study, all of them

are discussed below.

1.5.1 Review of Literature

In order to understand the problem in depth and come up with a possible solution. To

do so related researches have been reviewed, this consists of professional journals, formal

research reports, university-affiliated bulletins, reports, monographs, and NER systems

developed for other languages.

In addition, discussions were held with Gamo language linguistic experts regarding the

linguistic nature of the language like the grammatical structure and the properties of

Gamo language named entities.
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1.5.2 Corpus Collection and Dataset Development

A well-developed and standardized dataset for linguistic analysis is important, but the

same as other Ethiopian languages, the Gamo language does not have a well-organized

dataset for research that has led us to prepare a dataset.

To do so, the manually written text documents were collected and converted to digital

text data by employing typewriters, and each word in the document was assigned with

the corresponding tag, which is called data annotation .

1.5.3 Tool Selection

We used python programming language to develop the Gamo language Named Entity

recognition(GLNER) model. Packages and libraries used are gensim, pandas, scipy,

sklearn, NLTK, numPy, and pyTorch.

1.5.4 Prototype Development

A prototype was developed to test the proposed model, followed by an experiment to

evaluate efficiency.

1.5.5 Conducting Experiments

Experiments were conducted on the prototype to measure performance. The perfor-

mances obtained throughout the conducted experiments are given in four evaluation

metrics: accuracy, precision, recall, and F1-score.

1.6 Scope and Limitation of the Study

The purpose of this research is to develop named entity recognition for Gamo language.

The scope of our study is limited to detection and classification of named entities of

person, organization location, and MISC only.
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1.7 Contributions

The main contributions of this research are:

� We have developed GLNER model that uses character and word level embedded

features.

� We have prepared large unlabeled Gamo language corpus that can be used for future

researches.

� We have developed labeled datasets for NER task.

1.8 Thesis Organization

The document is organized as follows. Theoretical backgrounds in NER are explained

in chapter two. Literature review discussed in chapter three. Our proposed approach is

explained in chapter four. The experimental procedures followed and results are discussed

in chapter five. Finally, chapter six presents conclusions from experimental observations

and recommendation to show further areas of improvement on GLNER models.



Chapter 2

Theoretical Background

In this chapter, the basic theoretical foundations used for solving the problem of Gamo

language named entity recognition and the area of its application are discussed. In

addition to that overview of Gamo language is given.

2.1 Named Entity Recognition

A named entity (NE) is a word or phrase that identifies one item from a set of

other items with similar features[1]. The term named entity refers to an organization,

person, and location names in a text. Named entity recognition (NER) is the process

of identifying and classifying named entities in text into predefined entity categories. It

is to recognize names of people, organizations, locations, and time, currency, percentage

expressions in the text[2]. The task focuses on a small set of coarse entity types and one

type per named entity, this kind of NER tasks is called coarse-grained NER [3][4], on

the other hand, fine-grained NER tasks [4],[5] focus on a much larger set of entity types

where a mention may be assigned multiple types.NER is part of many NLP tasks such

as information retrieval, machine translation, question answering, sentiment analysis,

etc. There were several approaches have been used to develop NER system for different

languages, from dictionary lookup to deep neural networks. Traditional approaches to

NER are broadly classified into three main streams: rule-based, unsupervised learning

and feature-based supervised learning approaches [9][10].

7



Chapter 2. Theoretical Background 8

2.2 Applications of Named Entity Recognition

Most often named nntity recognition(NER) has been used as a preprocessing step for other

natural language processing tasks[1]. It plays a crucial role in many natural language

applications such as semantic annotation, question answering, and opinion mining[11].

It also plays a vital role in natural language processing applications such as machine

translation, information retrieval, text summarization, and text clustering.

2.2.1 Semantic Annotation

Semantic annotation is a specific metadata generation meant to enable new information

access methods. The annotation is based on the concept that the named entities consti-

tute an important part of the semantics of the documents referred to therein. Semantic

Annotation is about assigning entities in the text links to their semantic descriptions, and

this kind of metadata provides both class and instance information about entities. Se-

mantic annotation is applicable for sort of text web pages, regular documents, text fields

in databases, etc[67]. This typically implemented with information extraction techniques,

one of which is Named Entity Recognition is used to identify concepts to annotate[11].

2.2.2 Question and Answering

Question answering systems provide concrete answers to queries, and NER techniques

are often used for this type of system as a means of facilitating the choice of answers.

Indeed, in TREC-8 about 80% of the queries used to evaluate this kind of system were

of the type who, where and when, which use to be answered with named entities of type

person, organization, location, and date[11].
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2.2.3 Opinion Mining

Opinion Mining is a field of research that analyzes people’s opinions about entities such as

products, services, organizations, individuals, issues, events, topics, and their attributes.

Opinion mining systems use named entity recognition as one of the preprocessing tech-

niques to provide users with more related opinions. After named entities are identified in

the process related opinions can be fetched easily[11].

2.2.4 Machine Translation

Machine translation is the use of computers to automate the process of converting con-

tent in one language to another language. In the process of translation, named entity

recognition helps to disambiguate some words with similar surface form as of named

entities[13].

2.2.5 Information Retrieval

Information retrieval is the task of retrieving relevant documents for the user query.

Information retrieval benefits from named entity recognition in two ways. The first one

is in the process of recognizing named entities in the user’s query. The second benefit is

recognizing named entities within the documents to extract only relevant ones based on

identified named entities[14].

2.2.6 Text Summarization

Text summarization is a process of summarizing a piece of text to a shorter version,

reducing the size of the initial text while at the same time preserving key informational

elements and the meaning of content. Named entities give a clue about the topic of a

text, they are among the most information-dense tokens of the text and largely define

the domain of the text. Therefore, named entity recognition enhances the identification

of important text segments in text summarizer[15].
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2.2.7 Text Clustering

Text clustering is a grouping of textual documents in a way that, documents having similar

content will be clustered in the same group. Named entity recognition can be used in

text clustering for ranking resulted in clusters based on the ratio of entities associated

with each cluster. It enhances the process of analyzing the nature of clusters and also

improves the clustering approach using selected features[14].

2.3 Overview of Gamo Language

Gamo language is spoken in the south-western part of Ethiopia, in the Gamo Zone of the

Southern Nations, Nationalities, and People’s Region (SNNPR). The language is called

gamottso by the speakers, who refer to themselves as Gamo. Over one million people

in the whole SNNPR consider themselves to be Gamo (Office of the Population Census

Commission, 2007). Gamo Language is being given as a language of instruction in the

lowest grades in primary school and it is given as a course up to university[36].

Gamo language is an Ometo language of the Omotic family. The classification of Omotic

is somewhat problematic, and there has been, and still is the discussion regarding the

external and internal classification. Omotic is often classified as a branch of Afroasi-

atic/Afrasian, alongside Berber, Chadic, Cushitic, Egyptian and Semitic[35]. Theil ar-

gues that the arguments for placing Omotic under Afroasiatic are not convincing and

that Omotic should be regarded as an independent language family. The classification

is based on mass comparison and lexico-statistics, both of which are methodologically

problematic.

2.3.1 Written Language

Gamo language is mainly written using the Latin script, but the Ethiopian script is also

used. The school books in Gamo use the Latin script. The alphabet contains all the letters

used in the English alphabet, including ten new letters, Nine of these are composed of two
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letters. The tenth is the numeral< 7 > which symbolizes the glottal stop, but never in

word initial position. In some cases, the value for the different letters are not the same as

for English. < C > stands for the ejective affricate /Ù’/, < q > for the ejective stop /k’/,

< x > symbolizes the ejective affricate /ţ’/, and < j > is sometimes used to symbolize

the semivowel /j/ and sometimes used to symbolize the sibilant /Z/. Sometimes the word

/haZé/ ‘big wasp’written as < hajje > and < hazhzhe >.

The second consonant of a consonant cluster is always geminated in written Gamo, but

there seems to be variation as to whether a consonant following < y > is geminated

or not. < y > symbolizes the consonant /j/, and the vowel /i/ when this occurs after

another vowel. A few of the letters in the alphabet do not correspond to a phoneme in

the language, these are < v >, < nh > and < ng >. There is no labiodental voiced

consonant, like /v/ in Gamo. < nh > represents a nasalized vowel, a feature which is

not phonemic in Gamo[38]. < ng > represents one of the allophones if a nasal in a

consonant cluster. The letter < ny > represents ñ, a phoneme that is, at best, very rare

in Gamo[39]. The letter < f > is used alongside < p >[36].

The difference between Gamo Language and English

Major differences in the letters and phonetic Systems of English and the Gamo Language

, English has 26 alphabetical letters, which are

A B C D E F G J I J K L M N O P Q R S T U V W X Y Z

The Gamo Language has 35 alphabetical letters, which are

A B C CH D DH DZ E F G H I J K L M N NH NY O P PH Q R S SH T TH U V W X

Y Z 7

Alphabetically, Gamo Language have an intersection of 26 letters. In the Gamo language,

we have 9 more letters, of which 8 are hybrids of existing letters and 1 is a number

representing a glottal sound.

The hybrid letters are Ch, Dh, Dz, Nh, Ny, Ph, Sh and Th. The glottal sound is 7,

which is taken to represent the international phonetic symbol ?. The Gamo Language

have the above major differences form wise. In the letter to sound representation, the

Gamo language is phonemic, meaning that one letter represents only one sound. A letter

cannot represent more than one sound unlike many cases in English. We can see these

through some examples. Xerox - in this word, we have letter ’x’ both initially and finally.
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The initial ’x’ represents /z/ while the final /ks/. Cancer - in this word we have letter ’c’

initially and medially. The initial ’c’ stands for /k/ while the medial one for /s/. Such

differences do not exist in the writing and reading system of the Gamo language. The

correspondence between letter and sound is one to one. Once, you know what sound a

letter represents, then that letter represents only that same sound wherever you find it.

The other main difference between English and the Gamo language writing and reading

system is that lengthening of sounds in words is represented by doubling of letters in the

Gamo Language writing. When a consonant sound is lengthened, it is geminated and we

double-write it in that position. When a vowel sound is lengthened, we say it is long and

double-write it in that position.

Let’s take some examples here:

words with short vowels words with long vowels

1. awa - sun aawa - father

2. eqa - standup eeqa - Priest

Words with short consonants words with geminated consonants

1. aga - baptise agga - leave it

2. tama - fire tamma – ten

2.3.2 Grammatical Arrangement

Word Order

Word Order in Noun Phrase

� The word order in the noun phrase is: modifier + noun + postposition

� Relative clauses are formed by making use of short verb form.

� When relative clauses occur to the right of the noun they modify, they take mor-

pheme -iss to nominalize which inflects for a person, number, and gender.
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Word Order in Main Clause

� Gamo is a strict verb final language(SOV).

� The object occurs immediately before the verb(SOV).

� The order between direct object and indirect object is free when the verb is ditran-

sitive.

� The direct object is always realized in absolutive case and the indirect one is realized

in the oblique case.

2.3.3 Gamo Language Nouns

Gamo language nouns are words used to name or identify any of a class of things, people,

and places or ideas. Gamo language nouns can be classified in to tangible (countable

nouns), intangible (non-countable), collective nouns, common nouns and proper nouns.

Tangible nouns are nouns which represent something that can be seen or touched, for

instance asa, wonbara, and ketha (human, chair, and house) denote things that can be

counted. On the other hand intangible nouns represent something that cannot be seen or

touched, for instance nouns like tuma, and na77aatetha(dark, and childhood) represent

things that cannot be counted. Collective nouns are used to denote class of things or

concepts instead of particular entities. For instance kafo, mole, and wude(bird, fish,

and herd) are names for class of things. Common nouns denotes particular group of

things and concepts in real world. For instance dorsa and deysha (Sheep and Goat)

refer particular group. The another class which is main focus of this research is proper

nouns. Proper nouns are nouns that identify specific person, organization, location,

and others. For instance Kasto, Gacho, and bore are names of a person, Tophphiya,

Arbamincce, Bonke, and Chencha are names of locations, and Arbamincce yuniversity,

and Arbamincce hosptale are names of organizations.
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2.3.4 Challenges of Gamo Language Named Entity Recognition

One of the main challenges of named entity recognition is that some proper nouns can

belong to open class category. For instance names of a location or organization can be

added to the classes. Another challenge is ambiguity. In Gamo language same name may

refer to different entities, for instance, Bonke can be the name of a person or location.

Additionally, challenges like nested named entities and ambiguity are exhibited in Gamo

language texts.

2.4 Named Entity Recognition Features

Supervised learning approaches for named entity recognition is extremely sensitive to

selection of features[20]. Features are characteristic or attributes of words designed for

algorithmic consumption. Features can be represented as boolean, numeric or nominal

values. Features used for named entity recognition can be classified into three categories

which are Word-level features, List lookup features, and document and corpus features

[16].

2.4.1 Word-level Features

Feature extraction and selection plays a crucial role in deep learning. In deep learning the

features extracted automatically from the representation of the data. The main features

for the NER task have been identified based on the different possible combinations of

available word and tag context. The features including prefix and suffix for all words.

The term prefix/suffix is a sequence of first/last few characters of a word, which may not

be a linguistically correct(meaningful prefix/suffix). Besides, various gazetteer lists have

been developed for use in the NER task. The different combination from the following

set for inspecting the best feature set for NER task have been considered: Previous NE

tag, POS tags, first word, digit information, and gazetteer lists[40]. The following are the

details of the set of features that were applied to the NER task:
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� Context word feature : Previous and next words of a specific word.

� Word suffix : Word suffix information is useful for the identification of NEs, this

feature may be used. It’s used in two different ways. The first is a fixed-length

word suffix of the current and/or the surrounding word(s), the second and more

convenient approach is to modify the feature as a binary value. The variable-length

suffixes of a word can be matched to predefined lists of useful suffixes for different

NEs classes. Various suffixes that may be particularly useful for the detection of

persons (e.g.-babu,-da,-di, etc.) and location names (e.g.-land,-pur,-lia, etc.) have

also been considered. Both types of suffixes have been used here.

� Word prefix: Prefix information of a word is also important, a fixed-length prefix

of the current and/or the surrounding word(s) might be treated as features.

� Part of Speech (POS) Information: POS information of the words, such as

the current and surrounding word(s) can be used as a feature, the better way is to

use a coarse-grained POS tagger. For NER, the coarse-grained POS tag is used,

with only the following POS tags: Compound noun, Common noun, Compound

proper noun, Proper noun, Postpositions, Number quantifier, and so on.

� Named Entity Information: The NE tag of the previous word is considered as

a feature.

� First word: If the current word is the first word of a sentence. Then the ’First-

Word’ feature is set to 1 otherwise, it is set to 0.

� Digit features: Several binary digit features are considered depending on the

presence and number of digits in the token, the combination of digits and punctua-

tion symbols, the combination of digits and symbols. These binary-valued features

are important for the recognition of miscellaneous named entities.

2.4.2 List Lookup Features

Gazetteer Lists: Gazetteer lists are used as the binary-valued features of the CRF. If

the current token is in a particular list then the corresponding feature is set to 1 for the

current and/or the surrounding word(s)[31]; otherwise, set to 0. The following is the list

of gazetteers:
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� Organization suffix word: This list contains words that are helpful in identifying

organization names. The ’OrganizationSuffix’ feature is set to 1 for both current

and previous words.

� Person prefix word: This is useful for the detection of the name of a person.

The ’PersonPrefix’ feature is set to 1 for the current and the next two words.

� Middle name: These words generally appear in the names of the person. The

’MiddleName’ feature is set to 1 for the current, the previous, and the next words.

� Surname: These words usually appear as their parts at the end of a person’s

names, the feature ‘SurName’ is set to 1 for the current word.

� Common location word: This list contains the words that are part of location

names and appear at the end, the feature ‘CommonLocation’ is set to 1 for the

current word.

� Frequent word: The feature ‘RareWord’ is set to 1 for those words that are not

on the list.

� Person name: This list contains the first name of person names, the feature

‘Person-Name’ is set to 1 for the current word.

� Location name: This feature is the first name of person names, the feature

‘Person-Name’ is set to 1 for the current word.

� Organization name: This list contains the organization names and the feature

’OrganizationName’ is set to 1 for the current word.

2.4.3 Document and Corpus Features

The document features are defined in terms of both document content and document

structure. Large collections of documents (corpora) are also an excellent source of fea-

tures[40]. Features that extend beyond single word and multi-word expression and include

meta-information on document and corpus statistics, document and corpus features are:

� Multiple occurrences and multiple casing

� Entity co-reference and alias

� Statistics for Multiword units
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2.5 Distributed Representation of Words

Word representations are mathematical objects associated with each word, and the rep-

resentations are often in vector form. The contents of this vector representation are the

characteristics of each word. The value of each dimension is the value of the specific

feature. Traditionally, one of the most obvious ways to represent words is through a hot

vector representation. Every word(w) in the vocabulary(V) has a unique index. The

words are then represented by a vector of size in which the index of the word is one and

the rest is zero[43].

� Home = [0,0,1,0,0,0,....,0,0,0,0]

� House = [1,0,0,0,0,0,....,0,0,0,0]

Hot representation is easy to understand and implement, but it only takes into account

the local context and has many flaws. One of the problems with such representation is

that, due to its local nature, it fails to show the correlation between words. For example,

consider the following two sentences for the tagging problem of the named entity:

� “Kasto slept on the bed”

� “Gacho slept on the couch”

If the above sentences are represented as one hot vector algorithm trained with the first

sentence “Kasto” as person name might fail to tag the word “Gacho” in the second unseen

sentence. The reason is that the representation of the two person names doesn’t capture

the relation between the two names. On the other hand, distributed representations

use lower dimensional real valued vectors to represent words. Each dimension represents

latent feature about that specific word. The representation may look like, as given below:

� Home = [0.543, 0.1133,-0.300, 0, 0, 0,....,-0.210,0.1223]

� House = [0.111,-0.2103, 0.390,...., 0.129,0.4478,0.612]
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This kind of representation is hoped to capture semantic and syntactic relation between

words[1]. Similar words are expected to be mapped to near vectors in the vector space. For

example, in the two sentences mentioned above, if they are represented by a distributed

representation, even if the tag did not see the word ”Gacho” in the training data, the

vector will be very similar to the word ”Kasto” which makes the decision easier.

2.5.1 Skip-gram Model

This model accepts the word Wi and predicts the words around the given word (Wi) that

are context words (Wi−2,Wi−1,Wi+1,Wi+2). Context words don’t have to be immediate

words. Some words can be skipped inside a given window size to look forward and

backward from the target word. The Skip-gram model has a hidden neural network. The

input layer consists of one-hot encoded vector of the vocabulary[12]. The Skip Gram

model is shown in Figure 2.1 below.

Figure 2.1: Skip gram model

2.5.2 Continuous Bag of Words Model

Continuous bag of words(CBOW) is reverse of skip gram model. Given the context

(Wi−2,Wi−1,Wi+1,Wi+2) the task is to predict the word. CBOW uses the average vector

of the input context words to compute the output of the hidden layer and uses the output

of the input layer hidden layer weight matrix and the average vector as the output[12].

The CBOW model is shown in Figure 2.2 below.
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Figure 2.2: CBOW model

2.5.3 FastText

FastText is a library designed by Facebook’s AI Research Lab to learn word embeddings

and text classification. It is another word embedding method which is an extension of

the word2vec model. FastText represents every word as an n-gram of characters instead

of directly learning vectors for words. So, for instance, take the word, “artificial” with

n=3, the fastText representation of this word is < ar, art, rti, tif, ifi, fic, ici, ial, al >,

where the angular brackets indicate the beginning and end of the word. This helps to

capture the meaning of shorter words and enables the embeddings to understand suffixes

and prefixes. Once the word is represented using the character n-grams, the skip-gram

model is applied to learn the embeddings. This model is considered to be a model word

bag with a sliding window over a word because the internal structure of the word is not

taken into account. As long as the characters are inside this window, the order of the

n-grams does not matter.

FastText is working well with rare words. So even if a word hadn’t been seen during

training, it could be broken down into n-grams to get its embeddings[69].
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2.6 Semantic and Syntactic Information in Neural

Word Vectors

Models discussed in the previous sections are capable of capturing many linear depen-

dences between words. The syntactic properties of words, such as inflective forms of

a word, are most closely represented on a continuous vector space. Distributed vector

representation of words shows the state of the art on the test set for the measurement

of syntactic and semantic word similarities[21]. More complex similarity checks can be

carried out by simple algebraic operations with vector representation of words.

2.7 Approaches for Named Entity Recognition

In this section, different approaches that have been used for the development of named

entity recognition tasks are discussed, ranging from traditional machine learning to deep

learning.

2.7.1 Traditional Approaches to NER

Traditional approaches to NER task are broadly classified into three main streams: rule-

based, unsupervised learning, and feature-based supervised learning approaches[16].

2.7.1.1 Rule Based Approaches

Rule-based approaches rely on handcrafted language rules prepared by language ex-

perts[17]. Generally, rules-based approaches consist of a set of patterns using grammati-

cal, syntactic and orthographic features. Such systems can perform better for restricted

domains. They can detect complex entities that may be difficult for learning models.

However, the main disadvantages of this approach are its lack of portability, robustness

and high maintenance costs due to a slight change in data[18].
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2.7.1.2 Machine Learning Approaches

Machine learning approaches use a collection of training examples to automatically induce

rules. These rules are sequence labeling algorithms for categorizing named entities [16].

Machine learning approaches are defined as statistical models for making predictions

about named entities in a given text[17]. There are 3 major machine learning approaches,

they are supervised learning, unsupervised learning, and semi-supervised learning.

1. Supervised learning: Nowadays, supervised learning approaches are the most

dominant approaches to the tasks of the named entity classification. Popular su-

pervised learning approaches include Hidden Markov, Maximum Entropy Models,

Conditional Random Fields, Vector Support Machines, Decision Tree, etc[40]. We

used a conditional random field to classify named entities into predefined categories.

Conditional Random Field(CRF): can be considered as a logarithmic linear

model suitable for sequence tagging when context information is taken into account.

Suppose there are two random variables X and Y, P (Y |X) is the conditional prob-

ability distribution of Y given X, if Y can form a Markov random field, then the

conditional probability distribution P (Y |X) can be considered as a conditional ran-

dom field, if X and Y have the similar structure, like X = (X1, X2, ., ., ., Xn), Y =

(Y1, Y2, ., ., ., Yn) are random variable sequences represented by linear chain, then

P (Y |X) is the linear chain conditional random field (linear-CRF). In sequence tag-

ging tasks, CRF can define features to capture the relationship between labels, and

use these features to give scores to different predicted tag sequences.

2. Semi-supervised approaches: Semi-supervised learning methods use both la-

beled and unlabelled corpus for training. The impetus behind semi-supervised

learning is to resolve the lack of labeled training data by using large unlabelled

corpus[11]. The main method in Semi-Supervised Learning is called bootstrapping,

which includes a small measure of control at the start of the learning process. The

model is trained on the initial set of labeled data and then the prediction is made

on a separate set of unlabeled data. The performance of the model is then improved

by using the predictions of previously developed models[18]. Many languages do

not have large annotated data for the training of supervised learning algorithms.

An unsupervised learning approach is proposed to solve this problem.



Chapter 2. Theoretical Background 22

3. Unsupervised learning approach: Unsupervised learning methods do not re-

quire any structural information on the data. Common unsupervised learning tasks

include clustering, where the objective is to separate instances into groups; nov-

elty detection, which identifies the few instances that are very different from the

majority; and dimensional reduction, which seeks to represent each instance with a

lower-dimensional feature vector[19].

2.7.2 Deep Learning

Deep learning, also known as deep structured learning or hierarchical learning, is a set of

machine learning algorithms that try to learn a layered input model commonly known as

neural networks. It enables computational models made up of multiple layers of processing

to learn data representation at multiple abstraction levels. Deep learning algorithms are

capable of discovering complex structures from large datasets using back propagation

algorithms to update their internal parameters[1].

Researchers in this field are trying to create models that learn representations from large

unlabelled data[22]. Various deep neural network architectures such as convolutional

deep neural networks, deep belief networks, and recurrent neural networks have been

applied to many areas and shown impressive results. These areas include natural language

processing, computer vision, speech recognition, and bioinformatics[23]. There are many

kinds of deep neural networks and deep neural network architectures. The neural networks

used in our research are discussed below.

2.7.2.1 Recurrent Neural Networks

Traditional neural networks do not consider the relations and the order of input data. For

example, if a NN is trying to classify what happened in a video, since the traditional NN is

dealing with sample data individually, it can not use the former frames to help understand

the later ones. The Recurrent Neural Network (RNN) was proposed to solve sequence

problems by taking into account the continuity of individual data samples. There is a

loop in the RNN units to keep the history information and forward the information from

the previous hidden state to the next. The basic structure of the RNN is shown in Figure

2.3. There is a single unit of RNN on the left side of this figure, the loop of this unit can
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forward the state to the next step at the current time. At each time step, the input xt

RNN generates the hidden state ht. According to the right side of Figure 2.3, the loop

operation of a single unit in the RNN may be regarded as a sequence of copies of the

same unit in chronological order, and each copy shall pass the information to the copy in

the next step[43]. There are several variations in RNN that depend on different needs.

Figure 2.3: Structure of RNN

LSTM

RNNs can keep the memory of each time step before the current one to help predict the

result. The only thing needed to predict the next word of the text is to consider a few

adjacent words, the word to be predicted has little distance from its related words. The

RNN works in this case. But what if the relevant information is far from the word to be

predicted? It is difficult for standard RNNs to link the information to be predicted and

its relevant information as the gap between them increases. In order to solve the problem

of ”long-term dependence,” Hochreiter and Schmidhuber[33] proposed the Long-Term

Memory, which aims to remember information in the short term. Compared to standard

RNNs, LSTM is better able to overcome the problem of vanishing gradients by using a

more complex architecture unit as shown in Figure 2.4. There are three gates designed

to control the way information passes through the cell. The three gates are described as

follows:

Figure 2.4: Structure of a unit in LSTM
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1. Forget gate: Forget the gate controls how the information from the current input

xt and the output from the previous time step ht−1 flow in the current cell, after

by an activation function σ has been calculated.Following equation 2.1 it outputs a

vector ft with all elements between 0 and 1. This vector points which information

is allowed to pass.

ft = σ (Wf · [ht−1, xt] + bf ) (2.1)

2. Input gate: The input gate decides how much new input information should be

added to the cell state. First, a sigmoid function decides which information needs

to be updated, and a tanh function generalizes the Ĉt which means the contents

available for update. Then, the old cell state Ct−1 can be replaced by adding new

information into the cell state and get Ct . This process is represented by equations

2.2, 2.3 and 2.4:

it = σ (Wi · [ht−1, xt] + bi) (2.2)

ĉt = tanh (Wc · [ht−1, xt] + bc) (2.3)

ct = ft × ct−1 + it × ĉt (2.4)

3. Output gate: What to output depends on the output gate. The output gate

will filter the cell state Ct and output the hidden state ht at current timestep. As

equations 2.5 and 2.6 states, it uses a sigmoid layer to calculate a vector decides

which part of the information in Ct is allowed to output (Ot). Ot is multiplied by

Ct to get the final result.

ot = σ (Wo · [ht−1, xt] + bo) (2.5)

ht = ot · tanh(ct) (2.6)

Bi-directional LSTM

LSTM only considers the influence of past information. Sometimes future features can

also influence the prediction. Bi-directional LSTM (Bi-LSTM) [34] enables the use of

both past features and future features for a certain time step.
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For example, if a input sample sentence has 10 words (10 timesteps)x1, x2, · · · , x10, there

exists two separate LSTM cells, the Bi-LSTM network works as follows:

� For forward-direction LSTM cells, the order of input words is x1 , x2, · · · , x10 ,

the output is a set of hidden states
−→
h1 ,
−→
h2 , · · ·,

−→
h10 ;

� For backward-direction LSTM cells, the order of input words is x10 , x9 , · · · , x1 ,

and output the hidden states set
←−
h10 ,

←−
h9 ,· · ·,

←−
h1 ;

� Concatenate two sets of hidden state as [
−→
h1 ,
←−
h1], [
−→
h2 ,
←−
h2], · · · , [

−→
h10,
←−
h10]

� For input xt at each time step, get output states Ht = [
−→
ht ,
←−
ht], then the rest opera-

tions are as same as in LSTM network.

2.7.2.2 Convolutional Neural Network

Convolutional neural networks (CNN) are feed-forward neural networks which are usually

used for image recognition and classification of objects. Deep learning models using con-

volutional neural networks (CNNs) have shown to achieve remarkable results for speech

recognition tasks, especially in the context of semantic parsing [66]. In our case, CNN

is used for modeling character-level information in the NER task[25]. CNNs use layers

with convolving filters that are applied on top of word vectors obtained from the word

embedding. All word representations are kept static after the word vectors have been

learned and only the hyperparameters of downstream layers of the model are optimized.

Considering a k-dimensional word vector corresponding to the ith word in the sentence

xi ∈ Rk, a sentence of length n will be represented by an n Ö k matrix as follows:

x1:n = x1 ⊕ x2 ⊕ ...⊕ xn (2.7)

Where⊕ serves as the concatenation operator. Hereby, xi:i+j represents the concatenation

of the embedded word vectors. Following the concatenation, a convolutional filter with

a window size of h words is applied to produce a new feature in the convolutional layer.

Let w ∈ Rhk be a convolution filter, b be a bias term, and σ being a non-linear function.
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Then a feature ci is generated from a window of words xi:i+h−1 as follows [66]:

ci = σ(w · xi:i+h−1 + b) (2.8)

This filter technique is applied to all h possible window of words in the sentence, to

produce a feature map c ∈ Rn−h+1 :

c = [c1, c2, ..., cn−h+1] (2.9)

Given the feature map, max-pooling is applied over the feature map which then takes

the maximum feature value ĉ = max(c). By doing so, the max-pooling extracts the most

important feature and deals with varying sentence lengths. Once the most important

features from the convolutional layer have been extracted, these can serve as the input

layer for a fully-connected layer, typically with some dropout and a softmax activation

function Sj.

Sj =
exj∑N
n=1exn

;∀j ∈ 1, ..., N (2.10)

To account for word sequences using CNNs, each filter in a convolutional layer can be

used as a time-step (a filter per word), this way word order is kept by sequentially feeding

the convolutional filters to a downstream task.



Chapter 3

Literature Review

This chapter contains a review of literature both on local languages named entity recog-

nition and foreign languages named entity recognition researches. All of them are briefly

discussed below.

3.1 Named Entity Recognition on Local Languages

There is no related work in Gamo Language, but there are related works in other

Ethiopian languages in Afan Oromo and Amharic.

The first research on named entity recognition was conducted in the Ethiopian language

by Moges Ahmed in the Amharic language[40]. He presented the CRFs based on the

entity recognition for the Amharic language. CRF is a statistical method that can be

used to recognize the names of the Amharic input text. The research is aimed to test

the applicability of the CRF based Named Entity Recognition System (NERS) for the

Amharic language. On the research, they used 10,405 tokens were taken from WIC

corpus and manually tagged text data. All the features, except prefixes and suffixes,

were considered and achieved a performance of 74.61% of F-measure.

The second research in the Amharic language was conducted by Besufekad Alemu[41].

Like the research done by Moges[40], they used supervised machine learning called CRF.

This research was carried out by making use of 13538 tokens taken from WIC corpus

27
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and tagged manually. They conducted fifteen experiments and the roles of each feature

in different experiments were tested, to identifying optimal features for ANER. They

conducted fifteen experiments and the roles of each feature in different experiments were

tested, to identifying optimal features for ANER. They achieved the highest performance

in the work is 80.66%, with a window size of two on both sides, previous and next tag of

a current word and prefix, and suffix with length 4. From the findings, prefix and suffix

feature previous, and next NE tag of a token and window size of four are the observed

optimal feature sets and widows size for recognizing Amharic named entities.

In contrast to the previous two works, the third research in Amharic was done ANER

using a hybrid approach[42], using a previously prepared corpus[40][41]. The corpus is

annotated with Person, Organization, Location, and Other named entity types and con-

sists of a total of 12191 tokens. The rule-based component of the system was built by

adopting the two rules used for building a rule-based NER for Arabic[45]. After selecting

a baseline feature set, different experiments were conducted to explore the performance

of their hybrid NER system in combination with different feature sets. They discovered

that the hybrid NER model has not improved significantly compared to the pure ML

NER model. The hybrid approach for ANER using the NE type has been predicted from

the rule-based component they built as a feature that has not improved the performance

of ANER. The POS feature used in their experiment has improved the performance of

ANER. The nominal flag value feature used in combination with POS information demon-

strated a significant improvement in performance. The two ML algorithms, namely SVM

and J48, which they used in their experiments resulted in better performance compared

to the CRF ML algorithms. In terms of accuracy, J48 outperformed SVM among the two

ML algorithms[42].

The previous three researches were done with a machine learning approach and manually

designed features, one of which was with a hybrid approach. The fourth one was with

automatically extraction features with word embedding. In addition to machine learning

algorithms, they implemented deep neural networks for ANER. They achieved 92.6%,

90.4%, 90.6% for BLSTM, LSTM, and MLP respectively. According to their conclusion

from the two types of LSTM cells, bidirectional LSTM outperforms unidirectional LSTM

and Among all classifiers used in their experiments SVM achieved the highest F1-score[43].
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The fifth research was done using deep learning with word embedding. In this work,

the word embeddings were generated in two ways, through word2vec [14] and random

vectors. In the random vector setting, all the words in the corpora are initialized with

random values. These random vectors are fed to the bi-directional LSTM model to

classify the words into the six categories. The word2vec model were trained using a

softmax function or negative sampling [46]. Then a bi-directional LSTM model was used

to classify the words based on the word vectors generated either by word2vec or randomly.

They achieved 77.2% of precision, 63.4% of recall, and 69.7% of F1 - score[44].

The first research in Afan Oromo done was, based on a hybrid approach: machine learning

and rule-based. But they didn’t implement rule-based component. They implemented the

machine learning component using the CRFs algorithm, with a corpus of more than 23,000

words out of which around 3600 are Nes was used. The parser checks the correctness and

they achieved 77.41% Recall, 75.80% Precision and 76.60% F1-measure. They concluded

that features play a vital role than the change in the training data size. This, on the

other hand, justifies that we used the best feature combination for the development of

the system[47].

The second study in afan Oromo also done using hybrid approach, they achieved an

overall improvement of the AONER performance. It is capable of recognizing person,

organization and location name, date time, currency, and address name. Based on exper-

imental results, they conclude that the hybrid approach outperforms the pure Rule-based

approach and the pureML-based approach. Their hybrid NER system for Afaan Oromo

outperforms the Afaan Oromo NER in terms of f-measure when applied to AONERcorp

dataset with f-measure of 83.22% for Person named entities, f-measure of 84.06% for Lo-

cation named entities, f-measure of 80.83% for Organization named entities, f-measure

of 86.06% for Date and Time named entities, f-measure of 83.67% for Percentage named

entities and 80.58% for Address named entities[48].
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Table 3.1: Researches on Ethiopian languages NER with machine learning

Research Approach Features used F1-score(%)
[40] CRF Context features, POS tag, prefix, suffix 74.61
[41] CRF Context features, word pairs, word shape, prefix,

suffix
80.66

[42] SVM, J48 Context features, POS tag, prefix, suffix, nominal
feature

85.9, 96.1

[47] CRF Position features, Normalized features, words
shape, POS tag, prefix, suffix

76.6

[48] CRF Morphological, POS tag, word length, dot flag,
capitalization, Gazetteers flags, nominal, NE tag

82.52

Table 3.2: Researches on Ethiopian languages NER with deep learning

Researche Input representation Context encoder Tag decoder F1-score (%)
[43] Word-level embedding

with Skip-gram
- SVM, BiLSTM 95.5, 92.6

[44] Word-level embedding
with Skip-gram

BiLSTM softmax 69.7

3.2 Named Entity Recognition on Foreign Languages

A lot of research has been conducted in this field, with different approaches from tra-

ditional approaches to deep learning. Rule-based NER systems rely on hand-crafted

rules that can be drawn based on domain-specific gazetteers[49] and syntactic-lexical

patterns[50]. Such traditional systems are mainly based on hand-crafted semantic and

syntactic rules for the recognition of entities. Rule-based systems work very well if the

lexicon is exhaustive. As a result of domain-specific rules and incomplete dictionaries,

high precision and low recall are often observed from such systems and systems can not

be transferred to other domains.

Clustering is a typical approach of unsupervised learning[51]. Clustering-based NER

systems extract named entities from clustered groups based on context-likeness. In doing

so, lexical resources, lexical patterns, and statistics computed on a large corpus can be

used to infer named entities(NEs) in a corpus. Research with an unsupervised learning

approach, for gazetteer building and named entity ambiguity resolution[52]. This model

combines entity extraction and disambiguation based on simple heuristics.
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Supervised learning based NER task, in which given annotated data samples, features

are carefully designed to represent each training example. Machine learning algorithms

are then applied to learn a model to recognize similar patterns from unseen data. Fea-

ture engineering is critical process to supervised NER tasks. Feature vector is a text

abstraction where a word is represented by one or more Boolean, numeric or nominal

values[51]. Word-level features [53], list lookup features [54], and document and corpus

features [56] have been widely used in various supervised NER systems. Bikel et al. [56]

proposed the first HMM-based named entity recognition system, called IdentiFinder, to

identify and classify names, dates, time expressions, and numerical quantities. Zhou and

Su [53] extended IdentiFinder by making use of mutual information. The difference is

that Zhou’s model assumes mutual information independence while HMM assumes con-

ditional probability independence. Besides, Szarvas et al. [57] developed a multilingual

NER system by making use of the C4.5 decision tree and AdaBoostM1 learning algo-

rithm. Major merit again is that it provides an opportunity to train several independent

decision tree classifiers through different subsets of features then combine their decisions

through a majority voting scheme. Given labeled samples, the principle of maximum

entropy is applied to estimate a probability distribution function that assigns an entity

type to any word in a given sentence based on its context. Borthwick et al. [58] proposed

a “maximum entropy named entity” (MENE) by applying(making use of) the maximum

entropy theory. MENE can make use of a various range of knowledge sources in making

its tagging decisions. Other systems using maximum entropy can be found in [59]. [62]

proposed an SVM-based system, which uses an uneven margins parameter leading to

achieve better performance than original SVM on a few datasets. SVM does not consider

“neighboring” words when predicting an entity label, but CRF takes context into account.

McCallum and Li [61] proposed a feature induction method for CRFs in NER. Krishnan

and Manning [60] proposed a two-stage approach based on two linked CRF classifiers,

the second CRF uses the latent representations drawn from the output of the first CRF.

In recent years, deep-learning NER models have become dominant and have achieved

state-of-the-art results[19]. There are three key strengths in applying deep learning tech-

niques to NER. First, NER benefits from a non-linear transformation that produces

non-linear mappings from input to output. Compared to linear models ( for instance,
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log-linear HMM and linear-chain CRF), deep-learning models can learn complex and in-

tricate features from data via non-linear activation functions. Second, deep learning saves

significant effort in the design of NER features. Traditional feature-based approaches re-

quire a considerable amount of engineering skills and expertise in the field. Deep learning

models, on the other hand, are effective in automatically learning useful data represen-

tations and underlying factors from raw data. Third, deep learning NER models can be

trained in an end-to-end paradigm, by gradient descent. This property enables us to de-

sign relatively complex NER systems. One such research is [63] which builds a biomedical

named entity recognition system based on deep learning. In this paper huge potential

feature information represented as word vectors are generated by neural networks based

on unlabeled biomedical text files, their system achieved F-score 71.01% on GENIA reg-

ular test corpus. From their experiments, they concluded that a deep learning approach

can effectively perform better on biomedical NER. Similarly, [25] makes use of CRF and

BLSTM, the model relies on two sources of information about words: character-based

word representations learned from the supervised corpus and unsupervised word repre-

sentations learned from unannotated corpora. They used English, Dutch, German, and

Spanish corpus to evaluate their approach. The results achieved were 90.94%, 81.74%,

78.76%, 85.75% F-scores respectively on four languages. Another approach proposed in

[65] uses neural network architecture that automatically detects Word and character-

level features using a hybrid bidirectional LSTM and CNN architecture. They have used

lookup tables to transform discrete features such as words and characters into continuous

vector representations, which are then concatenated and fed into the BLSTM network.

A convolutional neural network is used to induce character-level features. They achieved

91.65% F-score on CoNLL data. Most of the researches done in this area used the same

approach with some modifications to improve the accuracy of their model.

Based on the literatures reviewed above, we have used character and word level repre-

sentations for feature extraction, deep-learning for encoding feature, and CRF for decod-

ing(prediction) to investigated for the GLNER system.
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Named Entity Recognition System

Design and Architecture

The proposed approach to Gamo language entity recognition involves four major layered

processes. These are corpus collection and dataset development, distributed represen-

tation,context encoder, and tag decoder layer. All layered processes are interconnected

and arranged in such a way that the output of the current process is an input to the

next process, as shown in Figure 4.1 below. Each step in the GLNER model described

as follows.

Figure 4.1: GLNER System model

33
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4.1 Corpus Collection and Dataset Development

Corpus collection and dataset development is a pre-processing stage in which all text

data are collected and prepared for the next step. Two forms of data have been prepared.

The first is a collection of unlabelled text corpus for data representation, including data

collection and pre-processing. The second is labeling dataset for training, validation, and

testing the model, in which all the words labeled or tagged with the corresponding tag,

tags are LOC, PERS, MISC, ORG, and O.

4.1.1 Data Collection

There are more than 72 different languages in Ethiopia, but there is no organized dataset

developed by institutions for all languages. Some researchers have developed datasets for

Amharic and Afan Oromo for their study[40][47].

Like most Ethiopian languages, Gamo language does not have organized dataset. So

the first task we did was developing a dataset, to do so we collected about 2.6 MB of

plain text from ILCA and Arbaminch Universty (AMU) softcopy, and Debub radio and

television organization, Arbaminch branch hardcopy. We found an average of 49 sentences

with named entities from 7 modules and 300 sentences with named entities, which were

collected from AMU and ILCA respectively. We found 4400 sentences with named entities

that were collected from Debub radio and television organization, 10 people involved in

converting hardcopy to softcopy.

Totally, we extracted about 19567 sentences from which we found 5000 sentences with

named entities.

4.1.2 Data Preparation

Data preparation is a preprocessing step for data representation. Data preparation in

our model involves two processes which are tokenization and cleaning, both of them are

described below:
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Tokenization

Tokenization is a method of maintaining a list of words or tokens that we can use in our

deep learning models. This involves converting the raw text to a list of words. Which

would be done by splitting the document by white space, including ”(space), new lines,

and tabs. Tokens are provided as input to the next process called Text cleaning.

Text Cleaning

After tokenization, tokens are used as input and then unnecessary tokens are cleaned up

from the corpus, such as punctuation like commas, apostrophes, quotes, question marks,

section markers (such as I and II) and hyphenated descriptions such as armor-like were

removed. Then the important tokens are provided as input for the next process called

data representation. In this research, we implemented a distributed representation.

4.1.3 Distributed Representations for Input

The tokens that are generated from the previous step forms a list of words, which are

provided as an input for embedding called distributed representation. In distributed

representation data represented in n-dimensional space and low dimensional real-valued

dense vectors where each dimension represents a hidden feature.

The distributed representation automatically learns from the text representation and cap-

tures the semantic and syntactic properties of the word that are not explicitly present in

the input of the NER. One of the benefits of using dense and low-dimensional vectors is

that most neural network toolkits do not perform well with very high-dimensional, sparse

vectors. The main advantage of dense representations is the power of generalization,

where certain features may provide similar clues, it is worth providing a representation

capable of capturing these similarities[64]. Distributed representation captures the corre-

lation between the words, unlike to one hot representation[1]. Word and character-level

distributed representations were used in our model.
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4.1.3.1 Word-level Representation

Word embeddings are a type of word representation that enables words of similar meaning

to be represented in a similar way. A distributed representation of the text is perhaps

one of the key breakthroughs in the performance of deep learning methods to address the

challenges of natural language processing[64].

CBOW and Skip-Gram model were used as part of the Word2Vec approach to word em-

bedding learning. The Skip-gram model is an efficient method for learning high-quality

distributed vector representation that captures syntactic and semantic word relation-

ships[22].

We used the skip-gram model for word embedding learning over our corpus. Where each

word is represented by a point in the embedding space, and these points are learned by

moving around based on the words that surround the target word. The vector-space

representation of words provides a projection where words with similar meanings are

locally clustered within space.

Notably, larger window sizes appear to produce word embeddings with less syntactic

information, considering the window size in a range[1-16][68], so we considered the window

size in the range[3-21]. We’ve used a 100-dimensional vector space. Word level embedding

generates a vector representation of each word, then concatenated with a character level

embedding representation vector and provided as an input to the context encoder.

4.1.3.2 Character-level Representation

Character level representation is capable of extracting sub-word level information such as

prefix and suffix. Another advantage of character-level representation is that it naturally

deals with out-of-vocabulary. Thus, the character-based model can infer representations

for unseen words and share information of morpheme-level regularities.

CNN is an efficient approach to extract morphological information (like the prefix or

suffix of a word)from characters of words and encode it into neural representations[25].

We have used CNN-based architectures for extracting character-level representation.
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Figure 4.2: The convolution neural network for extracting character-level representa-
tions of words.

The character level embedding takes word sequence from the pre-trained word embedding

on our corpus. As shown in figure 4.2, it takes word sequence and appends padding if the

number character of the input word is less than a character window size. A conservative

CNN configuration is used with 30 filters and a character window size(kernel size) of 5

with a rectified linear (relu) activation function. This is followed by a max-pooling layer

that reduces the output of the convolutional layer by half, we use a maxpool to extract

meaningful features out of our convolution layer.

Next, the 1D output from the CNN part of the model is flattened to one long 1D vector to

represent the features extracted by the CNN. CNN outputs the extracted features in a 25-

dimensional vector space. Then the character-level representation vector is concatenated

with the word-level embedding before feeding into a BiLSTM context encoder.

4.1.4 Tagging

Tagging/labeling is the process of assigning a tag to each word in a sentence. Thus,

the second dataset we developed was labeled dataset for training, validation and testing

proposed GLNER model. To do so, sentences with named entities were extracted from

the collected text data, then each word in a sentence labeled with a tag. Tags are LOC,

PERS, MISC, ORG, and O. For example, name of locations tagged/labeled with LOC,

name of a person labeled with PERS, name of an organization labeled with ORG, another

named entities labeled with MISC, all the special characters labeled with O. In doing so,

the tagging scheme called BIO was used[1], it works as below.
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BIO tagging Scheme:

� I - Word is inside a phrase of type TYPE

� B - If two phrases of the same type immediately follow each other, the first word of

the second phrase will have tag B-TYPE

� O - Word is not part of a phrase

Some of GLNER sentence available in the dataset annotated in BIO scheme:

Arbamince yuunversite 6 sha7appe bollara oraththa tamaareta ekkides .

B-ORG I-ORG O O O O O O O

Data splitted in the dataset as training, validation, and test dataset. We used 90% of

the dataset for training, 10% of the dataset for validation from the training dataset, and

10% of the total dataset used to test the model. In labelling the dataset two people were

employed, they are not a linguistic expert, but their mother tongue is Gamo language.

4.2 Context Encoder

After having a good data representation, the next step on the GLNER model is to learn

the BiLSTM context encoder from the input representations. BiLSTM used to capture

long-term dependencies and obtain the whole representation of an input sequence. Long

short-term memory (LSTM) cells are the building block of recurrent neural networks.

While LSTM cells in the feed-forward neural network process text from left to right,

BiLSTMs also consider the opposite direction, this allows the model to uncover more

patterns as the amount of input information increases. In other words, the model takes

into account not only the sequence of tokens after the token of interest but also before

the token of interest.

BiLSTMs make efficient use of past information (via forward states) and future infor-

mation (via backward states) for a specific time frame[51]. Thus, a token encoded by

a BiLSTM will contain evidence from the whole input sentence. BiLSTM operates on

sequential data, it takes as input a sequence of vectors (x1, x2, x3, ..., xn) that generated

from character and word level embedding, and return another sequence(h1, h2, h3, ..., hn)
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that represents information about the sequence at every step in the input. For a given

sentence(x1, x2, x3, ..., xn) containing n words each represented as a 100-dimensional vec-

tor, the LSTM encodes the representation ht of the left and right contexts of the sentence

at each word t. Then concatenate the left and right context representations, ht = [
−→
ht ;
←−
ht ].

These representations effectively include a representation of a word in a context that is

useful for sequence labeling. Thus, the token encoded by the BiLSTM will contain evi-

dence from the entire input sentence. Then, encoded features(context-dependent repre-

sentations) fed to tag decoder.

4.3 Tag Decoder

Tag decoder is the final step of the GLNER model. It takes context-dependent vector

representations encoded by the context encoder as inputs and predicts the sequence of

tags corresponding to the input sequence. We used the CRF layer as the tag decoder on

top of the bi-directional LSTM layer. In contrast to softmax, CRF takes into account

the correlations between neighborhood labels and decodes the best chain of labels for

a given input sentence[51]. Formally, we used x = x1, x2, ..., xn to represent a generic

input sequence where xi is the input vector of the ith word. y = y1, y2, ..., yn represents

a generic sequence of labels for x. Y(x) denotes the set of possible label sequences for

x. The probabilistic model for sequence CRF defines a family of conditional probability

p(y|x;W, b) overall possible label sequences y given x with the following form:

p(y|x; W,b) =

∏n
i=1 ψi (yi−1, yi, x)∑

y′∈Y (x)

∏n
i=1 ψi

(
y

′
i−1, y

′
i, x
) (4.1)

Where ψi

(
y

′
, y, x

)
= exp(W T

y′ ,yxi
+ by′ ,y) are potential functions, and W T

y′ ,y
and by′ ,y are

the weight vector and bias related to label pair
(
y

′
, y
)
, respectively. For CRF training, we

use the maximum conditional likelihood estimation.

For a training set{(xi, yi)}, the logarithm of the likelihood (a.k.a. the log-likelihood) is

given by:

L(W, b) =
∑
i

log p(y|x;W, b) (4.2)
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Maximum likelihood training selects parameters such that the L(W, b) log-likelihood is

maximized. For a sequence CRF model (only interactions between two successive labels

are considered). Decoding is to search for a sequence of labels y∗ that has the highest

conditional probability:

y∗ = argmaxy∈Y (x)p(y|x;W, b) (4.3)

4.4 Evaluation Techniques

Entity recognition involves identifying both entity boundaries and entity types. In ”exact-

match evaluation,” a named entity(NE) is considered to be correctly recognized only if its

boundary and type match the ground truth. Precision, Recall, and F-score are computed

on the number of true positives (TP), false positives (FP), and false negatives (FN)[19].

� True Positive (TP): Entities that are recognized by NER and match ground truth.

� False Positive (FP): Entities that are recognized by NER but do not match ground

truth.

� False Negative (FN): Entities annotated in the ground truth that are not recognized

by NER.

Precision measures the ability of a NER system to present only correct entities, Recall

measures the ability of a NER system to recognize all entities in a corpus, and F-score is

the harmonic mean of precision and recall, and the balanced F-score is most commonly

used.

Precision =
TruePositives

TruePositives+ FalsePostitives
(4.4)

Recall =
TruePositives

TruePositives+ FalseNegatives
(4.5)

F1 − score = 2× Precision×Recall
Precision+Recall

(4.6)

As most of NER systems involve multiple entity types, it is often required to assess the

performance across all entity classes. Two measures are commonly used for this purpose:

macro-averaged F-score and micro-averaged F-score. Macro-averaged F-score computes

the F-score independently for each entity type, then takes the average (hence treating
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all entity types equally). Micro-averaged F-score aggregates the contributions of entities

from all classes to compute the average (treating all entities equally). The latter can be

heavily affected by the quality of recognizing entities in large classes in the corpus. we

used Micro-averaged F-score for our study.



Chapter 5

Experimental Result Discussion and

Evaluation

5.1 Experimental Scenarios

The Experiment was done based on two scenarios, depending on the data representation

with the same encoding and decoding:

1. The first scenario is based on word level embedding and

2. The second scenario is based on word level embedding along with character level

embedding.

Those experiments were done to analyze the effect of different features that extracted at

data representation on learning using deep neural network. In doing so, we evaluated two

models and compared them with each other, and we took the best performing model of

them. Then the best performing model were again compared with ANER[44], in order

to show that our model is best performing with our dataset.

42
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5.2 Result Discussion and Evaluation

Corpus of Gamo language

We collected 2.6 mb of text data after preprocessing it reduced to 2.2 mb. As showed

in the table 5.1 the corpus contians 19601 sentence from which we found 5000 sentences

with named entity. Their are 30 Most common words exists in the corpus and character,

token, word, and sentence level informations are specified.

Table 5.1: Corpus of Gamo language

Items Number of items
Characters 2593654
Tokens 302,537
Word 62418
Sentences 19601

Word-level embedding

For our experiments, we used three approaches to word embeddings. As the basic word

embeddings, we used 100 dimensional vectors. All words lower-cased before convert to

their corresponding vectors. The vectors are allowed to be modified during training.

Figure 5.1: Visualization of word embedding
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We have expemented differnet word embedding algorithms by varying window size and we

took the best performing algorithm and window size to carry out further experment. We

experimented with two models, the first experiment was done using word-level embedding

alone, with the same context encoder and tag decoder, the result is specified in Table 5.2.

The Result in Table 5.2 and 5.3 is measured in terms of f1-score.

Table 5.2: Effect of embedding algorithm on the first model

Training algorithm
window size(ws)
ws=3 ws=5 ws=7 ws=9 ws=11 ws=13

cbow 70.7% 71.14% 68.48% 67.46% 69.89% 70.44%
skip gram 70.83% 70.89% 71.04% 70.98% 71.19% 72.22%
fastText 71.06% 70.56% 70.04% 70.02% 68.44% 66.78%

The second experiment was done using word-level embedding in conjunction with charac-

ter level embedding, with the same context encoder and tag decoder, the result is specified

in Table 5.3.

Table 5.3: Effect of embedding algorithm on the second model

Training algorithm
window size(ws)
ws=3 ws=5 ws=7 ws=9 ws=11 ws=13

cbow 70.04% 72.24% 69.31% 71.56% 73.54% 71.34%
skip gram 74.01% 71.52% 72.60% 72.10% 74.11% 71.15%
fastText 73.19% 73.13% 71.08% 72.43% 73.18% 73.21%

As shown in the table 5.3 skip gram algorithm with window size of 11 outperforms others.

So, we took it for further experment, in the rest of the expements word embedding of

skip gram algorithm with window size of 11 was used.

Figure 5.2: Word embedding with skip
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As shown in figure 5.2 we got a better result with a window size of 11, when the window

size increases we didn’t find a better result. Our result confirms, larger window sizes

appear to produce word embeddings with less syntactic information[68].

Character-level embedding

Our model works with character embeddings as well, which is generated from pre trained

word embedding. For each word, convolution and max-pooling are applied to extract a

new feature.

Words are padded with special padding characters on both sides depending on the win-

dow size of CNN. We randomly initialized a embedding with values drawn from a uni-

form distribution with range
[
−
√

3
dim

,+
√

3
dim

]
to output a character embedding of 25

dimensions with filter size of 30 and character window size 5. The same set of random

embeddings was used for all experiments. The resulting vector of character embedding is

concatenated with other word-level feature vectors and fed to BiLSTM context encoder.

We have experimented our model by varying the number of character window size and

number of filter in our preliminary experiments only character size of 5 and number of

filter 30 better than others.

Labelled dataset

Table 5.4: Labelled dataset of Gamo language

Class
Trianing Validation Test
Begning Contiounm Begning Contiounm Begning Contiounm

Person(PER) 2668 2521 262 233 284 272
Location(LOC) 1719 1973 268 227 168 195
Organization(ORG) 999 4190 82 338 98 403
MISC 4402 1240 575 157 396 115

We developed labeled dataset for Gamo language, it contains the number of named entities

per each category, as specified in the table 5.3. We made use of this labeled dataset for

trianing, validation and testing our model.
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Effect of context encoder

Table 5.5: Selection of encoding method

Accuracy Precision Recall F1-Score
Bivanilla 93.08% 74.59% 62.34% 67.92%
BiGRU 93.87% 74.35% 65.48% 69.63%
BiLSTM 94.59% 76.15% 72.49% 74.28%

As shown in the table 5.4, bidirectional LSTM best suits our model comparing to the

other context encoders. So, we applied BiLSTM as the basic architecture to encode

sequence context information.

Effect of number of hidden layers

Number of hidden layers is the most important criteria, it affects optimization algorthm

upon training the NNs.

Table 5.6: Effect of number of hidden layers

Number of hidden layers
1 5 10 20 40 80 160

Accuracy 84.20% 92.76% 93.67% 94.59% 94.08% 94.46% 93.87%
Precision 49.00% 72.86% 76.48% 76.15% 75.79% 78.87% 75.66%
Recall 12.76% 60.67% 66.32% 72.49% 67.78% 69.87% 69.25%
F1-Score 20.25% 66.21% 71.04% 74.28% 71.56% 74.10% 72.31%

We have varied the number of hidden layers for the given input sets and the results are

shown in the table 5.5. It is noted that best fiting number of hidden layer are 74.28%

and 74.10% of F1-Score with 20 and 80 number of hidden layers respectively.

Effect of optimization algorithm

Parameter optimization is performed with stochastic gradient descent (SGD). To reduce

the effects of “gradient exploding”, we use a gradient clipping of 5.0.

Table 5.7: Optimization algorithm selection

Accuracy Precision Recall F1-Score
Adam 91.98% 66.56% 63.49% 64.99%
SGD 94.59% 76.15% 72.49% 74.28%
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Table 5.8: Mini-batch SGD

Batch size
4 8 16 32 64 128

Accuracy 92.60% 92.34% 92.68% 91.66% 91.59% 90.72%
Precision 73.70% 73.52% 69.47% 70.83% 70.74% 71.29%
Recall 60.67% 62.45% 66.63% 56.90% 55.13% 47.80%
F1-Score 66.55% 67.53% 68.02% 63.11% 61.96% 57.23%

we expermented our model with SGD, adam and mini-batch optimizer, from three of

them SGD optimizer performed the best result in preliminary experiments as shown in

the table 5.6 and 5.7.

Effect of Learning Rate

Another crucial issue in training neural network is the learning rate. In order to ensure

the gradient descent method would perform better, it requirs the value of the learning

rate within appropriate range. If the learning rate is too large, it makes unstable learning

for the models, and if it is set at too small a value, the training time will take much

too long. The appropriate learning rate can achieve high efficiency under stable training,

which can reduce the training time.

Table 5.9: Effect of Learning Rate

Learning rate
0.0001 0.001 0.01 0.1

Accuracy 86.70% 92.26% 94.59% 78.47%
Precision 55.00% 77.04% 76.15% 16.85%
Recall 24.16% 57.22% 72.49% 14.54%
F1-Score 33.58% 65.67% 74.28% 15.61%

For SGD optimizer, we experimented the learning rate in the range [0.0001 - 0.1], with

a weight decay of 0.05, and learning rate of 0.01 resulted better than others as shown in

table 5.8.

After getting all the above suitable parameters and hyper-parameters, we experimented

our model in two scenarios, and measured the performance in terms of precision, recall

and F1-score for each class of named entity in the dataset of Gamo language. The

figures shows the comparison between the three standard evaluation measures for classes

of named entity.
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The intention of this comparison is to show the difference in percentage of each measure

in each class. The precision measure in each class gave higher percentage over the other

2 measures.

The first scenario

The experment was done by making use of features that extracted from word embedding

along with deep learning, the result is showen in the figure 5.3 below. The performace

of this expermanet are accuracy 93.96%, precision 74.25%, recall 70.29% and F1-Score

72.22%.

Figure 5.3: The precision, recall, and F1-Score of each categories using word embed-
ding features.

The second scenario

The experment was done by making use of features that extracted from word embedding

and character level representation with the same encoding with the first experment, the

result is showen in the figure 5.4 below. The performace of this expermanet are accuracy

94.59% precision 76.15% recall 72.49% and F1-Score 74.28%.

Figure 5.4: The precision, recall, and F1-Score of each categories using word and
Character embedding.
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Comparative analysis of two scenarios

In this section the experments based on two scenarios compared with one another, which

are learning based on word-level embedding, and word-level and character-level embed-

ding.

Figure 5.5: The precision, recall, and F1-Score of two GLNER models

AS showen in the figure 5.5 above, NER for GL with deep learning based on features

that extracted extracted with word-level embedding in conjunction with character level

embedding outperforms, deep learning based on feature extracted with word-level embed-

ding. NER for GL with deep learning based on features that extracted from word-level

embedding alone achieved performance of precision 74.25%, recall 70.29% and F1-Score

72.22%, and word and character level embedding together achieved achieved performance

precision 76.15%, recall 72.49%, F1-Score 74.28%. So the second model improves precision

1.9%, recall 2.2% and F1-Score 2.06 respectively.

Comparative analysis of GLNER with other Language

Comparing GLNER model with other deep learning model is inapproprate becuase in

deep learning the number of data set maters the performace. To compare the dataset is

needed to be same for the models. Becuase of which we simply compared our model with

ANER[44], to show that our model is best perfoming with our dataset.
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Figure 5.6: The precision, recall, and F1-Score of ANER and GLNER model.

In ANER, they found average precision (77.2%) and recall (63.4%), for an overall 69.7%

F1-score and we found precision 76.15%, recall 72.49% and F1-Score 74.28%.



Chapter 6

Conclusion and Recommendation

This chapter is conclusion of the study based on the expemental analysis. It also contains

recomandation to show further researches that can be done in the future.

6.1 Conclusion

This paper has proposed a model for Gamo Language named entity recognition and

classification, an under-resourced language. In doing so, we assessed the structure of GL

and the linguistic patterns that refer to Nes.

Gamo is a strict final verb (SOV) language. The object appears immediately before the

verb (SOV). When the verb is ditransitive, the order between the direct object and the

indirect object is free. Gamo language nouns are words used to name or identify any of

a class of things, people, and places or ideas.

Gamo language nouns can be classified in to tangible (countable nouns), intangible (non-

countable), collective nouns, common nouns and proper nouns. The main focus of this

research is proper nouns and Common nouns.

We have reviewed related studies that are conducted so far in different languages, this

consists of professional journals, formal research reports, university-affiliated bulletins,

reports, monographs, and NER systems developed for other languages.

51
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Two models have been developed: the first model consists of word-level embedding for

data representation using skip-gram, context encoding using BiLSTM, and tag decoding

using CRF. The second model is consists of Character and word-level data representation

using CNN and word2vec(skip-gram) respectively, context encoding using BiLSTM, and

tag decoding using CRF.

We used python programming language to develop a prototype for the Gamo language

Named Entity recognition(GLNER) model. Packages and libraries used are gensim, pan-

das, scipy, sklearn, NLTK, numPy, and pyTorch.

As a baseline research, we found promesing result. According to the exprment, we con-

clude that named entity recognition with charater and word level embedding outperforms,

named entity rocogintion with word level embedding alone for Gamo language text. Our

model GLNER achieved accuracy 94.59%, precision 76.15%, recall 72.49%, and F1-Score

74.28%.
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6.2 Recommendation

This research demonstrated features that extracted from character and word level em-

bedding are used for NER task. It also shows that high performance NER system can

be build from character and word embedding features. But to have full fledged GLNER

further researches could be conducted. Based on our observations, we recommend the

following future research areas. When conducting our experiments we have used small

amount of corpus for representing data, and for training, validation and testing. So, to

get better result the amount of data need to be large. Inaddition to the size of dataset

there are number of studies that need to be done such as:

1. Part of speech tagging task

2. Our research focused on only basic named entity classes (Person,organization, loca-

tion, and MISC), further researches could consider additional categories of named

entities to have complete GLNER system.

3. Data leak prevention through named entity recognition

4. Question and answering

5. Machine translation
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J.M.,Computer Standards Interfaces, 5,482–489,Named Entity Recognition: Falla-

cies, Challenges and Opportunities,35,2013.

[12] Rong, X. (2014). word2vec parameter learning explained. arXiv preprint

arXiv:1411.2738.

[13] Babych, B. and Hartley, A., 2003. Improving machine translation quality with au-

tomatic named entity recognition. In Proceedings of the 7th International EAMT

workshop on MT and other language technology tools, Improving MT through other

language technology tools, Resource and tools for building MT at EACL 2003.

[14] Oudah, M. and Shaalan, K., 2012, December. A pipeline Arabic named entity recog-

nition using a hybrid approach. In Proceedings of COLING 2012 (pp. 2159-2176).

[15] Hassel, M., 2003. Exploitation of named entities in automatic text summarization for

swedish. In NODALIDA’03–14th Nordic Conferenceon Computational Linguistics,

Reykjavik, Iceland, May 30–31 2003 (p. 9).

[16] Nadeau, D. and Sekine, S., 2007. A survey of named entity recognition and classifi-

cation. Lingvisticae Investigationes, 30(1), pp.3-26.

[17] Kaur, D. and Verma, A., 2014. Survey on Name Entity Recognition Used Machine

Learning Algorithm. (IJCSIT) International Journal of Computer Science and Infor-

mation Technologies, 5(4), pp.5875-5879.

[18] Mansouri, A., Affendey, L.S. and Mamat, A., 2008. Named entity recognition ap-

proaches. International Journal of Computer Science and Network Security, 8(2),

pp.339-344.

[19] Li, J., Sun, A., Han, J. and Li, C., 2020. A survey on deep learning for named entity

recognition. IEEE Transactions on Knowledge and Data Engineering.

[20] Tkachenko, M. and Simanovsky, A., 2012, September. Named entity recognition:

Exploring features. In KONVENS (pp. 118-127).



Bibliography 56

[21] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S. and Dean, J., 2013. Distributed

representations of words and phrases and their compositionality. In Advances in

neural information processing systems (pp. 3111-3119.

[22] Athavale, V., Bharadwaj, S., Pamecha, M., Prabhu, A. and Shrivastava, M., 2016.

Towards deep learning in hindi ner: An approach to tackle the labelled data scarcity.

arXiv preprint arXiv:1610.09756.

[23] LeCun, Y., Bengio, Y. and Hinton, G., 2015. Deep learning. nature, 521(7553),

pp.436-444.

[24] Britz, D., Goldie, A., Luong, M.T. and Le, Q., 2017. Massive exploration of neural

machine translation architectures. arXiv preprint arXiv:1703.03906.

[25] Chiu, J.P. and Nichols, E., 2016. Named entity recognition with bidirectional LSTM-

CNNs. Transactions of the Association for Computational Linguistics, 4, pp.357-370.

[26] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random fields: Probabilis-

tic models for segmenting and labeling sequence data,” 2001.

[27] Kumar, A. and Sebastian, T.M., 2012. Sentiment analysis: A perspective on its past,

present and future. International Journal of Intelligent Systems and Applications,

4(10), pp.1-14.

[28] WONDIMU GAGA GASHE. (2010). Sociolinguistic facts about the Gamo area,

South Ethiopia. Addis Ababa, ARCCIKCL.

[29] Král, P., 2011. Features for named entity recognition in czech.

[30] colah’s blog. Understanding LSTM Networks. http://colah.github.io/posts/2015-08-

Understanding-LSTMs/ . Accessed march 4, 2020.

[31] Ekbal, A., Haque, R. and Bandyopadhyay, S., 2008. Named entity recognition in

Bengali: A conditional random field approach. In Proceedings of the Third Interna-

tional Joint Conference on Natural Language Processing: Volume-II.

[32] Mikolov, T., Chen, K., Corrado, G. and Dean, J., 2013. Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781.



Bibliography 57

[33] Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory. Neural compu-

tation, 9(8), pp.1735-1780.

[34] Graves, A., Mohamed, A.R. and Hinton, G., 2013, May. Speech recognition with

deep recurrent neural networks. In 2013 IEEE international conference on acoustics,

speech and signal processing (pp. 6645-6649). IEEE.

[35] Bender, M.L., 2003. Northeast Africa: a case study in genetic and areal linguistics.

In Ms (based upon a presentation at the International Workshop on ‘The connection

between areal diffusion and the genetic model of language relationship’, held at

the Research Centre for Linguistic Typology, Australian National University, 17-22

August 1998).

[36] Thomassen, A.L., 2015.Contributions to the description of the phonology of the

Bonke variety of Gamo (Master’s thesis).

[37] Taylor, Nicholas (1994). “Gamo Syntax”. PhD thesis. London: University of London.

Theil, Rolf (2006). Is Omotic Afroasiatic? A Critical Discussion. Accessed:

[38] Hirut Woldemariam (2004). “Gamo: a dialect variant or a group with its own di-

alects?” In:Cushitic-Omotic Studies. Ed. by Yoichi Tsuge. Kanazawa: Kanazawa

University, pp. 67–78.

[39] Hayward, R.J. and Chabo, E., 2014. Gamo-English-Amharic Dictionary: With an

Introductory Grammar of Gamo. Harrassowitz Verlag.

[40] Ahmed, M., 2010. Named Entity Recognition for Amharic Language (Doctoral dis-

sertation, Addis Ababa University.

[41] Alemu, B., 2013. A named entity recognition for Amharic (Doctoral dissertation,

Addis Ababa University.

[42] Tadele, M., 2014. Amharic Named Entity Recognition Using A Hybrid Approach

(Doctoral dissertation, Addis Ababa University.

[43] Dagimawi, D., 2017. Amharic Named Entity Recognition Using Neural Word Em-

bedding as a Feature (Doctoral dissertation, AAU).



Bibliography 58
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