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Abstract: The phase change of all-inorganic cesium lead halide (CsPbI3) thin film from yellow δ-phase
to black γ-/α-phase has been a topic of interest in the perovskite optoelectronics field. Here, the main
focus is how to secure a black perovskite phase by avoiding a yellow one. In this work, we fabricated
a self-doped CsPbI3 thin film by incorporating an excess cesium iodide (CsI) into the perovskite
precursor solution. Then, we studied the effect of organic additive such as 1,8-diiodooctane (DIO),
1-chloronaphthalene (CN), and 1,8-octanedithiol (ODT) on the optical, structural, and morphological
properties. Specifically, for elucidating the binary additive–solvent solution thermodynamics, we
employed the Flory–Huggins theory based on the oligomer level of additives’ molar mass. Resultantly,
we found that the miscibility of additive–solvent displaying an upper critical solution temperature
(UCST) behavior is in the sequence CN:DMF > ODT:DMF > DIO:DMF, the trends of which could be
similarly applied to DMSO. Finally, the self-doping strategy with additive engineering should help
fabricate a black γ-phase perovskite although the mixed phases of δ-CsPbI3, γ-CsPbI3, and Cs4PbI6

were observed under ambient conditions. However, the results may provide insight for the stability
of metastable γ-phase CsPbI3 at room temperature.

Keywords: perovskite; organic additive; cesium lead iodide; self-doped; yellow δ-phase; black
γ-phase; phase behavior

1. Introduction

Metal halide perovskites (MHPs) have the general formula of ABX3, where A is methyl
ammonium (MA) CH3NH3

+, formamidinium (FA) CH(NH2)2
+, methylhydrazinium

CH3(NH2)2
+, aziridinium (CH2)2NH2

+, cesium (Cs), or rubidium(Rb); B is lead (Pb),
tin (Sn) or manganese (Mn); and X is halide (Cl, Br, I) or its mixture [1–4]. MHPs can
serve as a semiconducting active layer for photovoltaic (PV) cells, photodetectors (PD),
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light-emitting diodes (LEDs), field-effect transistors (FETs), and sensors [5,6]. Due to the
thermal instability of organic cations, all-inorganic cesium lead halide (CsPbX3, X = Cl,
Br, I) becomes an alternative material by incorporating the inorganic cesium instead of
MA or FA [7–11]. CsPbX3 is known to have long charge carrier diffusion length, strong
light absorption, defect tolerance, thermal tolerance, narrow spectral bandwidth, tun-
able direct bandgap, high photoluminescence quantum yields (PLQY), and solution/melt
processability [12–24]. The power conversion efficiency (PCE) of all-inorganic CsPbX3
perovskite solar cells (PeSC) has reached ~21.15% [25] whereas the best PCE of FAPbI3
solar cell is ~26% in 2023 [26].

Among cesium lead halides, the cubic phase α-CsPbI3 has the smallest tolerance factor
t = (rA + rX)/

{√
2 · (rB + rX)

}
= 0.805, where rA, rB, and rX are the radius of cation A,

cation B, and anion X, respectively [27,28]. This t value slightly falls out from the structural
stability condition of 0.813 ≤ t ≤ 1.107, indicating that α-CsPbI3 may undergo a rapid
phase transformation below 320 ◦C [29]. Hence, α-CsPbI3 (black cubic) is structurally
unstable and converted into β-CsPbI3 (black tetragonal), γ-CsPbI3, (black orthorhombic),
and δ-CsPbI3 (yellow orthorhombic) at room temperature [30–32]. Specifically, δ-CsPbI3
is non-perovskite but thermodynamically most stable at room temperature, suggesting
that this phase should be avoided for perovskite optoelectronics. However, because of
its energy bandgap (Eg) of 1.73 eV [11] affording significant photon harvesting, CsPbI3
has received more attention than the other cesium-led halides (CsPbCl3 with Eg = 3.03 eV
and CsPbBr3 Eg = 2.23 eV) for PeSC applications [33–36]. In this process, the researchers
tried to overcome the intrinsic phase instability of CsPbI3 through additive engineering,
quantum dots, dimension engineering, composition engineering, metal ion doping, solvent
engineering, surface/defects passivation, and interfacial engineering [37–44].

In 2015, Snaith and coworkers demonstrated the working all-inorganic CsPbI3 solar
cell for the first time, in which hydroiodic acid (HI) was identified to stabilize γ-CsPbI3 at a
relatively lower temperature, ~100 ◦C [45]. Marronnier et al. observed the temperature-
dependent phase transformation from orthorhombic to cubic (δ→α) upon heating but
cubic–tetragonal–orthorhombic (α→β→γ) upon undercooling, indicating that CsPbI3
could temporally retain its black γ-phase at room temperature [46]. Zhang et al. improved
the crystal structure stability of γ-CsPbI3 through interface engineering by depositing
γ-CsPbI3 on top of iodine-doped reduced graphene oxide [47]. Wang et al. enhanced
the γ-phase CsPbI3 stability and minimized trap density by controlling crystallization
dynamics using chlorine doping [48]. Liu and coworkers demonstrated that the γ-phase
could be stabilized by reducing defect densities acting as both recombination center and ion
migration space, for which they employed an acyloin ligand (1,2-di(thiophen-2-yl)ethane-
1,2-dione (DED)) as a phase stabilizer and defect passivator [25]. Huang et al. recognized
that the intrinsic instability of the γ-phase originates from the small ion radius of cesium.
Hence, to solve this problem, they incorporated small amounts of poly(alkyl amine hy-
drochloride) (PAACl) additive to the perovskite precursor solution and improved the
stability of γ-phase CsPbI3 [49]. Vaynzof and coworkers demonstrated the fabrication of a
relatively stable γ-CsPbI3 thin film through co-evaporation of CsI and PbI2 with a small
amount of phenylethylammonium iodide (PEAI), affording a preferable crystal orientation
(columnar domains) with reduced defect densities [50]. Recently, Zhou and coworkers
identified the excess CsI itself (i.e., more than 1 = CsI/PbI2) preferred a formation of black
γ-phase to yellow δ-phase, which is interesting in that it used a self-component rather than
external one [51].

Additive engineering has been frequently employed for enhancing the performances
of both polymer solar cells (PSCs) and PeSCs [38,52,53]. In the case of PSCs, the phase-
separation scale should be controlled within the exciton diffusion length (~10–47 nm
depending on fullerene or non-fullerene acceptor and conjugated polymer) [54–56]. On the
other hand, in the PeSCs, it is important to control the nucleation and crystal growth of
perovskite from the colloidal dispersion via intermediate phase engineering (IPE) [57,58],
which is used for obtaining a high-quality perovskite layer (ideally a single crystal but
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practically a polycrystal with minimized defects). Specifically, 1,8-diiodooctane (DIO),
1-chloronaphthalene (CN), and 1,8-octanedithiol (ODT) have been commonly used for
organic electronics [59–63].

In 2007, Heeger and coworkers demonstrated that the addition of a few volume
percent of alkanedithiols including ODT has contributed to the enhancement of PCE from
2.8% to 5.5% through improving the bulk heterojunction morphology of PSCs [64,65]. Then
in the next year, the same group identified that DIO was the best among 1,8-di(R)octanes (R:
SH, Cl, Br, I, and CO2CH3) and suggested two criteria: (a) selective solubility of the electron
acceptor and (b) high boiling point of additive [65]. Then, to date, this additive strategy
has been continuously applied for non-fullerene-acceptor (NFA)-based PSCs as well as
all-polymer solar cells (all-PSCs) [59,66]. However, in the field of PeSCs, the conventional
solvent additives such as DIO, CN, and ODT are relatively less studied for all-inorganic
PeSCs although there are some for the hybrid PeSCs [67–71]. For example, in 2014, Jen and
coworkers demonstrated that the bidentate halogenated additive, DIO can enhance the
crystallization of MAPbCl3 [67]. In 2015, Chen and coworkers proved that the CN additive
is beneficial to regulating the crystallization of MAPbI3−xClx [68]. In 2018, Peng et al.
observed that the DIO additive also could enhance the crystallinity of MAPbI3−xClx [69].
In the same year, Tsai et al. proved that DIO is useful for the crystallinity, coverage, and
uniformity of the MAPbI3 thin film for PeSCs [70]. Then, recently, Ghorai et al. reported the
ligand-mediated revival of degraded α-phase CsPbI3 nanocrystals by using 1-dodecanethiol
(DSH), in which a heavily distorted α-CsPbI3 could be converted to the cubic CsPbI3 phase
via the trigonal Cs4PbI6 through the etching with the surface ligand/passivator, DSH [71].

In this study, we studied an all-inorganic CsPbI3 perovskite thin film doped with the
excess cesium iodide with molar ration, CsI/PbI2 = 2, which was inspired by Zhou et al.’s
interesting results with CsI/PbI2 = 1, 1.05, 1.5, and 4 in a nitrogen-filled glove box [51].
However, in our case, we carried out all the experiments in an ambient condition, indicating
that the results may suggest air processibility and stability for the CsPbI3 thin film. However,
note that, compared to N2 environment in a glove box, if we process the perovskite
thin film in air, the humidity (H2O molecules) may affect the crystallization process of
perovskite intermediates, which was explained by Lin and coworkers in detail [72]. Then,
we examined the organic additive (DIO, CN, and ODT) effects on the structural, optical,
and morphological properties of the self-doped CsPbI3 thin film for the first time. Hence,
through this work, the dual effects, self-dopant and external additives, can be elucidated in
air. Furthermore, we report the phase behavior of a binary additive–solvent system for the
first time based on the Flory–Huggins theory, presenting the role of additive in a typical
solvent (DMF and DMSO) medium used for perovskite electronics.

2. Materials and Methods
2.1. Materials

The materials used for the experimental works are lead iodide (PbI2, 99.99%%, Sigma-
Aldrich, Darmstadt, Germany), cesium iodide (CsI, 99.99%, Sigma-Aldrich, Darmstadt,
Germany), DMF (99.5%, AR chemicals, Delhi, India), DMSO (99%, AR chemicals, Delhi,
India), chlorobenzene (≥99.5%, AR chemicals, Delhi, India), 1,8-diiodooctane (DIO, 98%,
TCI chemicals, Tokyo, Japan), 1-chloronephtaline (CN, 99%, TCI chemicals, Tokyo, Japan),
and 1,8-octanediithiol (ODT, 95%, TCI chemicals, Tokyo, Japan), which were used as
received without further purification.

2.2. Methods

The perovskite precursors (0.8 mmol CsI and 0.4 mmol PbI2 without/with organic
additives) were dissolved in the solvent mixtures of 600 µL DMF and 400 µL DMSO and
stirred overnight at room temperature. Here, the additive was DIO, CN, or ODT, which
was 2% of the DMF/DMSO-mixed solvents by volume. Then, the perovskite precursor
solution was filtered using a polytetrafluoroethylene (PTFE) syringe filter with 0.22 µm
pore size. Then, 70 µL of colloidal perovskite precursor dispersion was dispensed on the
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top of ITO glass substrate. Here, the spin coating was processed with 1000 rpm for 10 s
and then 4000 rpm for 40 s. During spinning (after ~20 s), 200 µL CB antisolvent was
dispensed on top of the wet perovskite precursor film. Then, the thin film samples were
gently annealed on a hotplate at 120 ◦C for 10 min and cooled down to room temperature
for further characterization. Note that Zhou et al. [51] annealed their thin film at 320 ◦C
(i.e., a phase transition temperature for black α-phase CsPbI3 with cubic structure) for 3 s
in a N2-filled glove box. However, we processed our thin film in air without transferring it
to a glove box because we have interest in the air stability of all-inorganic CsPbI3 samples.

2.3. Characterization

The ultraviolet-visible (UV-vis) absorption data were obtained using UV-vis spec-
troscopy (SHIMADZU UV-2600, Kyoto, Japan). The photoluminescence (PL) emission
spectra of the self-doped CsPbI3 thin films were acquired using a spectrophotometer (SHI-
MADZU RF-6000, Kyoto, Japan) at an excitation wavelength of 420 nm. The PL decay
curves were recorded by using time-correlated single-photon counting (TCSPC) (model:
Fluorolog 3 TCSPC, Horiba, Houston, TX, USA). The transmission electron microscopy
(TEM) images were obtained by using a high-resolution TEM (HR-TEM, Model: JEOL,
JEM-2100, Peabody, MA, USA) with an operating voltage of 200 kV. The structural prop-
erties of the self-doped CsPbI3 thin films were investigated by using an X-ray diffraction
(XRD) analyzer (model: the Rigaku mini flex-300/600 diffractometer, Tokyo, Japan). The
microstructural morphologies of the thin films were characterized by using field emis-
sion scanning electron microscopy (FE-SEM, MAIA 3XMH TESCAN, Kohoutovice, Czech
Republic). The atomic force microscopy (AMF) tapping-mode images were obtained by
using the Park NX10 AFM (Park Systems, Suwon, Republic of Korea). Fourier transform
infrared spectroscopy (FT-IR) analysis was performed in transmittance mode by using the
PerkinElmer Spectrum Two FT-IR Spectrometer (Waltham, MA, USA). Here, the attenuated
total reflection (ATR) was employed to record the FT-IR spectra of the self-doped CsPbI3
thin films without/with organic additives in the range 4000–400 cm−1 with a resolution of
4 cm−1 [73].

2.4. Computational Methods

The electronic band structures of the unit cells (δ-CsPbI3 and γ-CsPbI3) were calculated
using Cambridge Serial Total Energy Package software (CASTEP, Materials Studio 2017,
Vélizy-Villacoublay, France). The Perdew–Burke–Ernzerhof (PBE) parametrization of the
generalized gradient approximation (GGA) was used to portray the exchange correlation
functional. The unit cell in the Brillouin zone was employed to estimate the electronic
band structures. For geometry optimization, the energy, maximum force, maximum dis-
placement, and maximum stress were 5 × 10−5 eV/atom, 0.01 eV/Å, 5 × 10−4 Å, and
0.02 GPa, respectively.

3. Results and Discussion

Figure 1 shows the chemical structures of (a) additives (DIO, CN, and ODT) and
(b) solvents (DMF, DMSO, and CB). Here, CB was used as an antisolvent during the
solvent engineering process. Tables 1 and 2 summarize the properties of additives and
solvents, respectively. Specifically, DMF and DMSO have Gutmann’s donor number (DN)
of 26.6 kcal/mol and 29.8 kcal/mol whereas CB has DN = 3.3 kcal/mol, indicating that
DMF and DMSO can have strong coordination bonding with haloplumbate containing
Lewis acid Pb2+ but CB cannot [74]. Therefore, the less polar CB molecule could act as an
antisolvent, which has a weaker basicity as well as a smaller solubility parameter (δ) of
9.5 (cal/cm3)1/2 than the other two solvents (DMF and DMSO) [73,75].
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Figure 1. Chemical structures of organic additives and solvents. (a) Organic additives: DIO, CN, and
OTD. (b) Solvents: DMF, DMSO, and CB.

Table 1. Group contribution to Ecoh (cohesive energy) for estimating the solubility parameter
(δ) [75,76]. Here, Egroup

coh and Ecoh are cohesive energy per group and per entire molecule, respectively.
MW2 is molecular weight, ρ2 is density, V2 is molar volume of organic additives, b.p. is boiling point,
and δ2

(
or δ′2

)
is solubility parameter, respectively. Here, the subscript-2 denotes additive molecule

whereas subscript-1 is used for solvent in Table 2.

Additive Group Egroup
coh

(J/mol)
Group

Number
Ecoh

(J/mol)
MW2

(g/mol)
ρ2

(g/cm3)
V2

(cm3/mol)
b.p.
(◦C)

δ’
2

(MPa)1/2
δ2

(cal/cm3)1/2

DIO -CH2- 4190 8 71,620 366.02 0.818 447.5 167–169 19.0 9.3-I 19,050 2

CN

-Cl 12,990 1
58,056 162.62 1.194 136.2 111–113 20.7 10.1-CH=CH- 10,200 3

>C=C(H)- 4860 1
>C=C< 9606 a 1

ODT
-CH2- 4190 8

77,050 178.36 0.970 183.9 269–270 18.8 9.2-S- 8800 2
-H 12,965 a 2

a Estimated from the solubility parameter data in the literature [77,78].

Table 2. Properties of solvents and antisolvent. MW1 is molecular weight, ρ1 is density, V̂1 is molar
volume of solvent, b.p. is boiling point, δ1

(
or δ′1

)
is solubility parameter [75], and DN is Gutmann’s

donor number [73], respectively. Here, the subscript 1 denotes solvent molecule.

Solvent MW1
(g/mol)

ρ1
(g/cm3) V̂1 (cm3/mol)

b.p.
(◦C)

δ’
1

(MPa)1/2
δ1

(cal/cm3)1/2
DN

(kcal/mol)

DMF 70.09 0.948 73.9 153 24.8 12.1 26.6
DMSO 78.13 1.100 71.0 189 29.7 14.5 29.8

CB 112.56 1.110 101.4 132 19.5 9.5 3.3

In this study, for preparing a perovskite precursor solution, we used mixed solvents
composed of DMF:DMSO = 3:2 volume ratio according to the literature report [79]. Then, we
added DIO, CN, or ODT as a solvent additive into the perovskite precursor solution, result-
ing in a change in solvent quality, good or poor. Hence, we investigated the phase behavior
of binary additive–solvent systems. Note that although we used a mixed DMF:DMSO
solvent system, we should decouple it for understanding phase behavior theoretically.

The Flory–Huggins theory can describe polymer solution thermodynamics [80–82].
In this study, the processing solvent additives can be treated as an oligomer. Note that
oligomer has a molecular weight whose degree of polymerization ≤10. Compared to
the solvents such as DMF and DMSO, the molecular size of the organic additives (DIO,
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CN, and ODT) falls into the oligomer level (see Tables 1 and 2). Hence, for the binary
additive-solvent mixture modeled as an oligomer–solvent system, the Gibbs free energy of
mixing could be expressed as Equation (1) according to Flory–Huggins theory [80],

∆Gmix
RT

=
φ1

r1
ln φ1 +

φ2

r2
ln φ2 + χ12φ1φ2 (1)

where φ1, φ2, r1, and r2 are the volume fraction and relative molar volumes of components
1 (solvent) and 2 (additive), respectively. In addition, R (=1.987 cal/(K·mol)) and T (K) are
the gas constant and temperature, respectively. Importantly, the χ12 interaction parameter
could be defined as χ12 = V̂1/RT(δ1 − δ2)

2 [80,83], where V̂1 is the molar volume of solvent
whereas δ1 and δ2 are the solubility parameter of component 1 and 2, respectively. Table 3
shows the χ12 and r2 for each system when r1 = 1 for a solvent (DMF or DMSO). Then, the
binodal curve can be calculated based on the below two equilibrium equations.

∆µα
1 = ∆µ

β
1 (2)

∆µα
2 = ∆µ

β
2 (3)

where ∆µi = ∂∆Gmix/∂ni is the chemical potential of component, i (= 1, 2), and α and β
are oligomer-lean phase and oligomer-rich phase, respectively [80–83].

Table 3. Flory–Huggins interaction parameter (χ12) and molar volume ratio (r2 = V2/V̂1) when
r1 = 1 for the solvent such as DMF or DMSO.

System DIO:DMF CN:DMF ODT:DMF DIO:DMSO CN:DMSO ODT:DMSO

χ12 291.6/T 148.8/T 312.8/T 966.2/T 691.8/T 1003.7/T
r2 ∗ 6.1 1.8 2.5 6.3 1.9 2.5

* Note that r2 ≤ 10 indicates that the component 2 can be treated as a model oligomer.

Figure 2 shows the temperature–composition phase diagrams (i.e., the binodal curves)
of (a) additive:DMF and (b) additive:DMSO systems, which were constructed by solving
Equations (2) and (3) simultaneously. First of all, the original Flory–Huggins theory can
capture a big essential picture without losing the physical meaning [80], indicating that we
should understand the predicted phase behavior qualitatively, not quantitatively. Second,
as indicated in Table 3, the phase behavior is largely governed by χ12 and r2. Third, small
χ12 denotes better miscibility between additive and solvent, indicating that the additive–
DMF system is better miscible than the additive–DMSO system (see Table 3). In Figure 2,
the additive–solvent miscibility has a similar sequence for both solvents, (a) CN:DMF >
ODT:DMF > DIO:DMF for the additive–DMF solution, and (b) CN:DMSO > ODT:DMSO >
DIO:DMSO for the additive–DMSO solution. However, the additive–DMF solution shows
the immiscibility region below room temperature (<300 K) whereas the additive–DMSO
solution displays it at a higher temperature (<1000 K, theoretically), indicating that the
additive–DMF system has a better miscibility than the additive–DMSO mixture. Hence,
in the DMF:DMSO = 3:2 mixture, if we employ an organic additive, the solvent quality is
going to be poor specifically because additive is not much miscible with DMSO. Hence,
we can expect that versatile iodide plumbate (PbI2−n

n with n = 2–6) are going to be more
aggregated (i.e., self-interactions are increased) if the additive is present in the perovskite
precursor solution. Here, it is noteworthy that (1) the perovskite precursor solution is a
colloidal dispersion, and (2) DMF and the DMF–DMSO mixture are retrograde solvent
systems [84,85]. Hence, the addition of organic additive has a similar effect on the rise
in temperature in the sense that the self-interactions among haloplumbate are enhanced,
which may affect the perovskite crystallization process, resulting in a different morphology
of the final perovskite thin films. See Figure S1 and Table S1 in Supplementary Materials
for the Flory–Huggins interaction parameter at 298 K (=25 ◦C).
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Figure 2. Phase diagrams of binary additive–solvent systems: (a) additive–DMF system and
(b) additive–DMSO system. Here, the additive could be DIO, CN, or ODT, which has a molar
volume with oligomer level compared to typical solvents such as DMF and DMSO.

At room temperature, the thermodynamically stable phase for CsPbI3 is yellow
δ-phase [11,31,32]. However, when the temperature is increased to 587 K, it can undergo
a phase transition into the black α-phase [31–34]. Then when α-phase is cooled down, it
can transform to β-phase at 554 K and to γ-phase at 457 K. Hence, at room temperature,
CsPbI3 could stay in yellow δ-phase (Figure 3a) or black γ-phase (Figure 3b), which are both
orthorhombic. In this work, to escape the yellow δ-phase (i.e., non-perovskite), we added
excess CsI into the perovskite precursor solution, which we call ‘self-doping’ because the
excess CsI can serve as an interstitial dopant or stay at the surface of perovskite crystals.
However, when we add excess CsI, it is known that Cs4PbI6 could be formed together
with γ-phase CsPbI3 [86] (see Figure S2 for the trigonal phase of Cs4PbI6). For clarification,
at this moment, it is noteworthy that in the field of conjugated polymers, ‘self-doping’
indicates that charge injected into the π–electron system of a conjugated polyelectrolyte
with the potential counterions is compensated by cation (or anion) migration, leaving
behind the negatively (or positively) charged counterions [87,88]. However, here we use
‘self-doping’ for the case of the perovskite doped with its own component (e.g., interstitial
doping and/or surface passivation).

Figure 4a,b show the electronic band structure for (Figure 4a) yellow δ-phase and
(Figure 4b) black γ-phase CsPbI3, which was calculated based on the unit cell structure
shown in Figure 3. Figure 4c,d display the density of states for structure for δ-phase and
γ-phase CsPbI3, respectively. Here, the estimated energy bandgap is 2.87 eV for δ-phase
and 1.90 eV for γ-phase, respectively. The results are slightly larger than the experimental
values explained below.
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Figure 5a,b show UV-vis absorption spectra for (a) the yellow δ-phase CsPbI3 and
(b) the self-doped CsPbI3 without/with three organic additives (DIO, CN, and ODT). As
shown in Figure 5a, when CsI:PbI2 = 1:1 under ambient conditions, the resulting structure
is a yellow δ-phase orthorhombic crystal (recall Figure 3a). On the other hand, Figure 5c,d
display the determination of bandgap based on Tauc plot, (αhν)2 vs. hν, where α is
absorption coefficient, h is Plank’s constant, and ν is the frequency of incident photon [89].
Resultantly, the yellow δ-phase CsPbI3 exhibits an optical bandgap (Eg) of 2.84 eV at the
wavelength (λ, i.e., absorption edge) of 437 nm whereas the self-doped γ-phase CsPbI3
displays Eg = 1.83 eV. However, when the organic additive (DIO, CN, and ODT) was
incorporated into the perovskite precursor solution, the resulting film shows different
energy bandgaps like Eg = 1.78 eV at λ = 697 nm for DIO, Eg = 1.76 eV at λ = 705 nm for
CN, and Eg = 2.59 eV at λ = 479 eV, confirming that the presence of additive affected the
crystallization process of perovskite (γ-phase) and non-perovskite (δ-phase). Here, it is
notable that when the organic additive (DIO or CN) was incorporated into the film, Eg
was reduced from 1.83 eV to 1.78 eV (DIO) or 1.76 eV (CN). This reduction suggests that
the internal crystal structures of thin films were better organized when the additive was
present in the perovskite precursor solution. On the contrary, when the organic additive
CN was employed for the perovskite film process, Eg was widened from 1.83 eV to 2.59 eV
(but still smaller than Eg = 2.84 eV of yellow δ-phase), indicating that the contribution
of γ-phase CsPbI3 might be minimized in this sample. Here, we guess that if ODT is
ionized (R–SH→R–S+ + H+) in the perovskite precursor solution, the octacarbon chainlike
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cation (-S+) may partly increase the d-spacing of perovskite layers just like low-dimensional
perovskite [90–93] and/or the accompanying polarity change in a colloidal dispersion
medium may induce the formation of more δ-CsPbI2 and Cs4PbI6 with a larger bandgap
under ambient conditions.
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a tangential line to determine the optical bandgap.

Figure 6a shows the PL spectra of self-doped CsPbI3 without/with organic additives.
Interestingly, the PL spectra exhibit two different peaks at ~636 nm and 590 nm for the
self-doped CsPbI3 without additive (the black solid line in Figure 6a). However, when DIO,
CN, and ODT were added for the self-doped CsPbI3, the PL peak positions were shifted
to 627 nm/597 nm (DIO), 636 nm/583 nm (CN), and 637 nm/586 nm (ODT), respectively.
Here, it is interesting that the PL peak position of ODT-added sample is comparable to those
of others, which is different from the results of UV-vis spectra in Figure 5b. One possibility
is that in Figure 5b, there is a small bump around ~600 nm, which might be partially linked
to the above PL emission. Here, it is noteworthy that the environmental condition was air
(not a controlled glove box), making the samples exhibit diverse characteristics (i.e., the
degree of internal phase transformation might be different). Figure 6b displays the time-
resolved PL (TRPL) decay curve of self-doped CsPbI3 without/with organic additives. First
of all, the decay curve shows two steps, i.e., a normal decay and additional small bump,
which makes the regular model (single, double, triple exponential fitting) not suitable for
describing the PL decay data. Hence, according to the literature report [90], we estimate
the PL lifetime at the 63% decay point in Figure 6b. Resultantly, the PL lifetime is ~1.1 ns
(self-doped CsPbI3, DIO, and CN) and ~0.9 ns (for self-doped CsPbI3 with ODT). However,
as shown in Figure 6b, there are PL decay tail curves, indicating that DIO > CN > ODT
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≈ ‘without additive’. Therefore, it seems that the additive engineering contributed to the
slight enhancement in PL lifetime.
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Importantly, for understanding both the two PL peaks and the two-step PL decay, we
examined a high-resolution TEM (HR-TEM) image for the self-doped CsPbI3. As shown
in Figure 7, the selected area diffraction pattern (Figure 7a) as well as the high-resolution
TEM image (Figure 7b) could be identified, displaying the nanocrystals embedded in the
crystalline matrix. Hence, we assume that these nanostructures might be related with the
two PL peaks as well as the two-step TRPL decay curves. As an example, we selectively
checked another sample, the self-doped CsPbI3 with the additive ODT; the result can be
found in Figure S3, displaying a similar nanostructural image, i.e., the nanocrystal domains
embedded in the crystalline matrix.
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Figure 8a shows the XRD pattern of self-doped CsPbI3 without additive whereas
Figure 8b displays the XRD patterns of self-doped CsPbI3 with the organic additives, DIO,
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CN, and ODT, which may highlight the results of air-processed cesium lead iodide samples.
First of all, when CsPbI3 was prepared with excess CsI, we observed γ-phase CsPbI3 with
an orthorhombic structure. However, at room temperature, the most stable structure is
unfortunately δ-phase CsPbI3. Specifically, when γ-phase CsPbI3 is exposed to a humid
condition, it is known that it transforms into the stable δ-phase CsPbI3 (non-perovskite, as
shown in Figure 3a) [94]. Furthermore, the excess CsI compounds afford the formation of
the trigonal Cs4PbI6 phase. Hence, as shown in Figure 8a, the self-doped CsPbI3 shows the
XRD patterns mainly originating from three compounds such as γ-/δ-phase orthorhombic
CsPbI3 and trigonal Cs4PbI6 [95]. Note that in this study, the reaction condition was
2CsI + PbI2, which could be a source for the reactions of CsI + PbI2 and 4CsI + PbI2,
producing γ-/δ-CsPbI3 and Cs4PbI6 and others. Interestingly, Cs4PbI6 is known to be used
for synthesizing CsPbI3 compounds [86]. Hence, as shown in Figure 8a, the self-doped
CsPbI3 sample’s black γ-phase exhibits XRD peaks at 2θ = 13.9◦, 19.9◦, 28.1◦, 32.1◦, and
41.3◦, corresponding to the orthorhombic crystallographic planes, (020), (200), (040), (013),
and (242), respectively. On the other hand, its yellow δ-phase displays the XRD peaks at
2θ = 10.6◦, 13.2◦, 27.2◦, 31.2◦, and 36.8◦, corresponding to the crystallographic planes, (002),
(102), (122), (016), and (043), respectively. Note that for this peak assignment, referring to the
Inorganic Crystal Structure Database (ICSD), 4,127,359 and 27,979 were used for γ-phase
and δ-phase, respectively. In the case of Cs4PbI6, the XRD peaks are observed at 2θ = 12.0◦,
23.4◦, 26.4◦, 42.0◦, and 53.9◦, corresponding to the trigonal crystallographic planes, (012),
(300), (131), (060), and (354), respectively [91]. Figure 8b shows the XRD patterns for the
self-doped CsPbI3 with versatile organic additives, DIO (brown), CN (violet), and ODT
(green solid line). As shown in Figure 8b, in the case of the green-colored data, additional
small-multiple peaks were observed, indicating that their phase purity is worst among
the samples. Only the self-doped CsPbI3 (Eg = 2.59 eV) with the additive ODT displayed
a significant blue shift in UV-vis spectra in Figure 5b,d, indicating that the useful black
γ-phase might have been minimized when ODT was employed as an organic additive for
the self-doped CsPbI3.
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Figure 8. XRD patterns for (a) self-doped CsPbI3 without organic additive and (b) self-doped CsPbI3

with organic additives such as DIO (brown), CN (violet), and ODT (green). Note that the blue solid
line is for γ-CsPbI3 from the Inorganic Crystal Structure Database (ICSD-4127359) whereas the red
solid line is for δ-CsPbI3 from ICSD-27979. The pink filled circles indicate the XRD peaks from the
trigonal Cs4PbI6 phase [95].

Figure 9 shows a SEM image of the self-doped CsPbI3 without/with organic addi-
tives DIO, CN, and ODT. The self-doped CsPbI3 without additive displays the rod-like
textural morphology (Figure 9a) whereas the self-doped CsPbI3 with additives shows
some common nanoscale spots on the surface of films (Figure 9b–d), which is in line with
Kim et al.’s report [96]. However, depending on the additive species, the morphology is
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somewhat different. The self-doped CsPbI3 with DIO shows multiple domains whereas
the sample with CN exhibits a relatively flat image. Interestingly, the self-doped CsPbI3
with ODT displays some abnormal texture in the diagonal direction (flow-like image),
indicating that the film is not uniform because of the ODT’s special character (e.g., probably
the ionizability of ODT; in this case, there might be coulombic interactions and chemical
reactions between thiol with haloplumbate in the perovskite precursor solution state). AFM
tapping mode images can be found in Figure S4, in which the self-doped CsPbI3 with
ODT shows a rod-like shape instead of granular spots, indicating that the sample could be
nonuniform (from different degrees of phase transformation) when processed in air.

Finally, we investigated whether or not the organic additive stays with the self-doped
CsPbI3 based on FT-IR spectroscopy. Accordingly, we obtained Figure 10, explaining the
functional group in the sample compounds. Largely speaking, the self-doped CsPbI3
without/with additive (DIO or CN) showed characteristic FT-IR spectra with three main
peaks at 894 cm−1, 758 cm−1, and ~443 cm−1 [97], indicating that DIO and CN molecules,
like other solvents such as DMF/DMSO, did not stay in the perovskite film after thermal
annealing at 120 ◦C for 10 min (within the detection limit of IR instrument). However, in
the case of the ODT-added sample, the film displays several additional peaks at 3774 cm−1,
2920–2848 cm−1, and 1483 cm−1, originating from O–H vibration (from absorbed water)
and/or C–C stretching vibration, C–H stretching, and C–H scissoring, respectively [98–101].
The presence of C–H vibration from ODT’s alkyl moiety indicates that ODT could be
ionized (i.e., R–SH→R–S− + H+) and reacted with the perovskite precursor (haloplumbate).
Note that alkylthiol (e.g., ODT) has been used to form a self-assembled monolayer on the
surface of metal nanoparticles through the reaction between thiolate anion (RS−) and metal
(e.g., Au) [102], suggesting the binding reaction between thiolate anion and haloplumbate
(specifically, soft lead element).
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moiety indicates that ODT could be ionized (i.e., R–SH→R–S– + H+) and reacted with the 
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Figure 10. FTIR spectra of self-doped CsPbI3 without and with organic additives, DIO, CN, and ODT.

4. Conclusions

We demonstrated that self-doped CsPbI3 with CsI:PbI2 = 2:1 could be useful for re-
taining a black γ-phase mixture by escaping a pure yellow non-perovskite δ-phase under
ambient conditions. In addition, when DIO and CN were employed as an organic addi-
tive, the crystallization process was partially modified, leading to the energy bandgap of
1.78 eV (DIO) and 1.76 eV (CN) instead of 1.83 eV (without additive). However, in the case
of the CsPbI3 with ODT, the bandgap becomes wider, e.g., ~2.59 eV, which might originate
from the ionizability of ODT affecting the crystallization process. Interestingly, the PL
spectra shows two emission peaks and the PL decay curves displayed two steps, suggesting
a compound mixture, about which HR-TEM showed the embedded nanodomains in a
crystalline matrix. In the case of additive-solvent’s phase behavior, the predicted miscibility
is CN:DMF (or DMSO) > ODT:DMF (or DMSO) > DIO:DMF (or DMSO) based on the
Flory–Huggins theory. Specifically, the additive is less miscible with DMSO, indicating that
the presence of additive (DIO, CN, and ODT) makes the solvent medium poorer than that
without additive. Future work may include the tunability of the phase purity for self-doped
CsPbI3 perovskite under ambient conditions for perovskite solar cell applications. Finally,
considering the interchangeability between two orthorhombic phases (γ-phase and δ-phase)
and between two crystalline compounds (Cs4PbI6 and CsPbI3), our results provide insight
into the stability of γ-phase CsPbI3 perovskite thin film. In other words, the meta-stable
γ-phase thin film processed under a controlled environment (e.g., N2-filled glove box)
undergoes a phase transformation and thereby the phase purity decreases with time.

Supplementary Materials: The following are available online at: The following supporting infor-
mation can be downloaded at: https://www.mdpi.com/article/10.3390/mi14081601/s1; Figure S1:
Flory–Huggins interaction parameter at 298 K as a function of organic additive species.
Figure S2: Crystal structure of trigonal Cs4PbI6 with space group R-3c. Figure S3: High-resolution
TEM images of cesium lead iodide thin films: (a) without organic additive and (b) with organic addi-
tive, ODT. Figure S4: AFM tapping-mode height image. (a) Self-doped CsPbI3 without any additive,
(b) self-doped CsPbI3 with DIO, (c) self-doped CsPbI3 with CN, and (d) self-doped CsPbI3 with ODT.
Table S1: Flory–Huggins χ12 interaction parameter at 298 K as a function of organic additive species.
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