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Abstract: Consumption of drinking water with a high concentration of fluoride (>1.5 mg/L) causes
detrimental health problems and is a challenging issue in various regions around the globe. In this
study, a continuous fixed-bed column adsorption system was employed for defluoridation of water
using volcanic rocks, virgin pumice (VPum) and virgin scoria (VSco), as adsorbents. The XRD, SEM,
FTIR, BET, XRF, ICP-OES, and pH Point of Zero Charges (pHPZC) analysis were performed for both
adsorbents to elucidate the adsorption mechanisms and the suitability for fluoride removal. The
effects of particle size of adsorbents, solution pH, and flow rate on the adsorption performance
of the column were assessed at room temperature, constant initial concentration, and bed depth.
The maximum removal capacity of 110 mg/kg for VPum and 22 mg/kg for VSco were achieved at
particle sizes of 0.075–0.425 mm and <0.075 mm, respectively, at a low solution pH (2.00) and flow
rate (1.25 mL/min). The fluoride breakthrough occurred late and the treated water volume was
higher at a low pH and flow rate for both adsorbents. The Thomas and Adams–Bohart models were
utilized and fitted well with the experimental kinetic data and the entire breakthrough curves for
both adsorbents. Overall, the results revealed that the developed column is effective in handling
water containing excess fluoride. Additional testing of the adsorbents including regeneration options
is, however, required to confirm that the defluoridation of groundwater employing volcanic rocks is
a safe and sustainable method.

Keywords: adsorption; breakthrough curve; defluoridation; up-flow mode; volcanic rocks

1. Introduction

Credible evidence from scientific literature substantiates both beneficial and detrimen-
tal effects of fluoride on human health with only a narrow range between intake associated
with these effects [1,2]. Consumptions of fluoride in low concentrations (<1.0 mg/L) is
an essential micronutrient for the healthy development of bone and dental enamel [3];
however, it leads to the development of fluorosis if it is consumed beyond the permissible
limit (>1.5 mg/L) [4].

In many parts of the world, groundwater sources are the single largest supply of
drinking water. For many rift communities, it may be the only economically viable option
for drinking water. In the Ethiopian rift valley, about 40% of deep and shallow wells are
contaminated with up to 26 mg/L of fluoride [5,6]. The weathering of primary rocks
and leaching of fluoride-containing minerals in soils yield fluoride-rich groundwater in
the Ethiopian Rift, which is generally associated with a low calcium content and high
bicarbonate concentrations [7,8].
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Globally, more than 200 million people, including Ethiopia, rely on groundwater
with a fluoride concentration above the permissible level [3,4,9]. According to the Central
Statistical Agency of Ethiopia report [10], 3.8% of the population is affected by high-level
fluoride concentrations (>1.5 mg/L) in groundwater, which is used for drinking purposes.
In general, fluorosis turns out to be the most widespread geochemical-based disease in the
East African rift, affecting more than 80 million people [11–14]. Thus, due to the health
effect of high fluoride in groundwater, it is essential to reduce excess fluoride concentrations
to the allowable limit (<1.5 mg/L).

So far, various technologies such as coagulation/precipitation, electro-coagulation,
membrane separations, ion exchange, and adsorption had been attempted for efficient
defluoridation of groundwater [15–18]. Some of the shortfalls of these techniques include
expensiveness, fouling issues, regular maintenance, and complicated operational proce-
dures. In comparison to the techniques mentioned above, the adsorption methodology is
still one of the most widely applied methods, taking the lead of high removal efficiency,
cost-effectiveness, ease of operation, simplicity of design, and availability of large varieties
of adsorbents [19,20].

Various adsorbents have been investigated and reported for the removal of excess
fluoride from water in an effective manner. Some of the widely employed adsorbents are La
(III)-Al (III)-activated carbon modified by chemical route [21], biomaterial functionalized
cerium nanocomposite [22], Quaternized Palm Kernel Shell (QPKS) [23], bone char and
activated alumina [24], bone char [25], renewable biowaste [26], MgFe2O4–chitosan–CaAl
nanohybrid [27], carbon nanotube composite [15], Neem Oil-Phenolic Resin Treated Bio-
sorbent [17], etc. However, many of these suffer from either time-consuming synthesis
procedure, high processing costs, availability of raw materials, or short lifespan, which
makes them impractical to be applied in the rift valleys that are essentially impacted by
high fluoride concentration in water [1]. Consequently, efforts have been made to obtain
easily accessible and long-lasting, low-cost, and efficient adsorbents that may be applied
for the purification of water in low-income countries such as Ethiopia.

In recent years, volcanic rocks (VPum and VSco) have received significant interest
for pollutant removal due to their valuable properties such as high surface area, low-cost,
easy accessibility, good mechanical resistance, and availability in large quantities [28]. The
source of these rocks is volcanic magma that formed during volcanic eruptions. Pumice
(VPum) is a finely porous rock frothy with air bubbles; Scoria (VSco) is a rough rock that
seems like furnace slag [28]. VPum is often formed from rhyolite magma [28], it can also
develop from trachytic or dacitic magma. Due to its high porosity and low specific gravity,
it has been used for water and wastewater treatment processes [29]. VSco is a vesicular
pyroclastic rock with basaltic compositions, reddish-brown to black, denser than VPum,
somewhat porous with high surface area and strength. Both volcanic rocks are found in
abundance in Europe (Italy, etc.), Central America, Southeast Asia (Indonesia, etc.), and
East Africa (Ethiopia, Eritrea, etc.) [28,29]. Although several studies have been conducted
on the application of volcanic rocks for pollutants-laden wastewaters [28–31], very little
research has been directed to the defluoridation of groundwater using volcanic rocks.

Previously, defluoridation research has been conducted on batch experiments using
natural adsorbents [6,32]. The sorption capacity of adsorbents gained from batch equi-
librium is valuable in giving basic information about the effectiveness of the adsorbents.
Nevertheless, the data obtained from batch studies may not be appropriate for contin-
uous processes where the contact time for the achievement of an equilibrium might be
insufficient [33]. Consequently, studies by different authors [34–36] reveal that contin-
uous processes mode (fixed-bed column set-up) yields reliable information about the
breakthrough time, appropriate adsorption conditions, and the stability of the adsorption
performance which can then be used to evaluate the potential of prepared adsorbents for
industrial applications [1]. Therefore, there is an interest to conduct adsorption studies in a
flow-through system.
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The primary objectives of the current work were to (i) investigate the fluoride sorption
capacity of VPum and VSco in fixed-bed column set-up, (ii) compare the adsorption prop-
erties of both adsorbents with each other, (iii) assess the fluoride adsorption mechanisms
with respect to varying solution pH, adsorbent particle size, and flow rate, (iv) deeper ana-
lyze the adsorption processes employing mathematical models such as the Adams–Bohart
and Thomas model, and (v) finally verify the suitability of the models for the design of
flow-through systems for the removal of fluoride from aqueous solutions.

2. Results and Discussions
2.1. Characterization of Adsorbents
2.1.1. Crystalline Structures and Material Properties and Experimental Conditions

The crystalline phases of VPum and VSco were characterized using the X-ray diffrac-
tion (XRD) instrumental technique. The mineralogical composition of the adsorbents was
characterized by matching the X-ray diffractogram (Figure 1a (VPum), b (VSco)) with
the database of the X’pert HighScore Plus software package (Version: 2.2b (2.2.2)). The
results showed that the main crystalline phases in VSco were Silicon Oxide (SiO2), Albite
low (Na(AlSi3O8)), whereas Hematite (Fe2O3) and Silicon Oxide (SiO2) and Albite high
(Na(AlSi3O8)) are the dominant components of VPum. The presence of crystalline phases
in VPum samples can be ascribed to the peaks at 2θ = 24.9◦, 27.6◦, 27.7◦, 37.7◦, 41.9◦, 58.0◦,
64.9◦and 65.0◦, while that of VSco sample appeared at 2θ = 22.2◦, 23.9◦, 23.9◦, 23.9◦, 28.2◦,
30.0◦, 33.9◦, and 35.8◦. The detected dome in both samples between 2θ = 10◦ and 40◦ is
an indication of amorphous material. The amorphous phase(s) present in the adsorbents
was estimated by the calibration method. This method makes use of the integrated counts
associated with the amorphous and crystalline fraction (Equation (1)) [37].

Cm(%) =

[
Cpa

Apa + Cpa

]
× 100 (1)

where Cm is the measured crystallinity, Cpa and Apa are the integrated peak areas for the
crystalline and amorphous components, respectively. The results revealed that the presence
of the amorphous phase (s) in VPum and VSco is 89% and 68%, respectively.

Figure 1. XRD patterns for (a) virgin pumice (VPum) and (b) virgin scoria (VSco).

The greater fraction of amorphous phase(s) in VPum compared with VSco possibly
origins from simultaneous rapid cooling and depressurization of high-temperature volcano
lava. The depressurization produces bubbles by lowering the boiling point of the lava. The
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simultaneous cooling then freezes the bubbles in the matrix of VPum. Due to rapid cooling,
crystals do not have enough time to grow. A similar observation has been reported from
the XRD analysis of pumice in previous studies [38,39].

Additionally, the results of material properties and experimental conditions were
summarized in Table 1 as shown below.

Table 1. Material properties and experimental conditions.

Parameters Virgin Scoria (VSco) Virgin Pumice (VPum)

Particle Size (mm) <0.075 0.075–
0.425 0.425–2.00 <0.075 0.075–

0.425 0.425–2.00

Mass of adsorbents, mads (gm) 737.90 763.90 680.50 376.40 265.90 186.40
Bulk density, ρb (gm cm−3) 1.43 1.48 1.32 0.73 0.52 0.36

Particle density, ρs (gm cm−3) 2.37 2.33 1.94 1.61 1.31 0.64
Void volume, Vv (cm3) 203.70 187.20 164.70 281.10 311.80 222.30

Total porosity, ε 0.40 0.36 0.32 0.55 0.61 0.43
Flow rate, Q (cm3 min−1) 1.25 2.50 3.75 1.25 2.50 3.75

Empty Bed Contact Time, EBCT (min) 412.00 206.00 137.33 412.00 206.00 137.33
Filter (Superficial) velocity, Vf (cm min−1) 0.02 0.05 0.07 0.02 0.05 0.07

Effective (Interstitial) velocity, VI (cm min−1) 0.06 0.13 0.23 0.05 0.08 0.17

2.1.2. Chemical Composition

The chemical analysis revealed that the major elements in VPum and VSco, as de-
termined by ICP-OES (Table S1), are Si, Al, and Fe. Other elements were present in
comparatively smaller quantities or below the detection limit of the instrument. In our
previous study [28], the XRF measurement (Table S1) indicated that the oxides of Si, Fe,
and Al were the major constituents of both VPum and VSco.

However, the chemical composition of the adsorbents might changes in time due
to weathering processes. Consequently, representative samples have to be checked for
possible changes induced due to weathering.

2.1.3. Fourier Transform Infrared (FTIR) Analysis

The FTIR spectrums of VPum (Figure 2a) and VSco (Figure 2b) at wavelengths ranging
from 4000 to 400 cm−1 are shown in Figure 2. Due to the symmetric stretching vibration of
Si-O-Si, the absorption band at ∼1045.75 cm−1 can be assigned to the characteristic peak of
(SiO4)2− groups in the FTIR spectrum of VPum [39], whereas the band located at∼1011.5 in
the FTIR spectrum of VSco can be belongs to the asymmetric stretching vibration of T-O-Si,
T = Si or Al [40]. In the FTIR spectrum of VPum, the peaks at ∼781 and ∼695.25 belong to
bending vibrations of Si-O-Si bond [38], whereas the band shown in the FTIR spectrum
of VSco at ∼759 is related to the stretching vibration of 6-fold coordinated Al(VI)-OH
and 6-fold coordinated Al(VI)-O [41]. The small peaks shown in the FTIR spectrum of
VSco at ∼572 and ∼539.25 can be attributed to the symmetric stretching of Si-O-Si and
Al-O-Si [40,42], whereas the small band at ∼465 belongs to bending vibrations of Si-O-Si
and O-Si-O [42]. Certain peaks like the broadening peak at ∼3602.5 cm−1 in the FTIR
spectrum of VPum and sharper peak at ∼2369.75 cm−1 in the FTIR spectrum of VSco
belongs to the asymmetric stretching vibration of -OH bond can be allocated to adsorbed
water molecules, whereas the peak at ∼1645.75 cm−1 in VPum can be allocated to the
bending vibration of H-O-H bond [38,39,42]. The most characteristic difference observed
between the FTIR spectrum of VPum and FTIR spectra of VSco concerning the band
attributed to the asymmetric stretching vibration of -OH bond. This band that is appeared
as a broad band at about ∼3602.5 cm−1 in the FTIR spectrum of VPum becomes sharper
and shifts to lower frequencies (∼2369.75 cm−1) in the FTIR spectrum of VSco indicating
that there is a high water content in VPum and could be correlated with less mechanical
strength than VSco. Similar observations have been reported for a different system [42].



Molecules 2021, 26, 977 5 of 20

Figure 2. Fourier-transform infrared (FTIR) for (a) VPum and (b) VSco.

2.1.4. Scanning Electron Microscope (SEM) Analysis

The VPum (Figure 3a) and VSco (Figure 3b) SEM micrographs allowed direct obser-
vation of the surface morphology of the adsorbents with a magnification of ×100. The
structure of VPum showed that the surface of VPum had an interconnected porous sur-
face [38,43], while VSco had an irregular shape and fibrous cavities (or pores). In addition,
it may be said that these pores in VSco were either closed or in open forms (pores) [44]. As
seen from the micrographs of the adsorbents, VPum had an interconnected inner porous
surface (as indicated in Figure 3a, red-colored), while VSco (Figure 3b) is dominated by the
dead-end pores. Consequently, the interconnected internal pore structure in VPum allows
for better fluoride accessibility and, hence, better adsorption capacity than VSco.

Figure 3. SEM micrographs for (a) VPum and (b) VSco.

2.1.5. pH and Point of Zero Charges (pHPZC)

The pH of the rock samples in water was found to be 6.65 and 7.20 for VPum and
VSco, respectively. The point of zero charges (pHPZC) of the adsorbents was identified
as 6.85 for VPum and 6.98 for VSco at the intersection of the graph of the initial pH vs.
the final pH (Figure 4). The slight difference observed in the adsorbents pHpzc is related
to their different characteristics. As can be seen from Table S1, the two volcanic rocks



Molecules 2021, 26, 977 6 of 20

(VPum and VSco) have different chemical compositions, which also influence the surface
charge of the adsorbents. This is in agreement with previous studies [30,45], showing
the effect of chemical composition on the zeta-potential of different materials. Below
these values (pH < 6.85 for VPum and <6.98 for VSco), the surface of the adsorbents is
positively charged. Thus, if the pH < pHPZC, fluoride could possibly be adsorbed onto
the surface of the adsorbents by coulombic attraction [6,46,47]. In addition, the curve for
the blank experiment (for blank electrolyte solution 0.01 M NaCl) of both adsorbents is
shown in Figure 4. As seen from the blank curve (Figure 4), a pH change without adding
the adsorbents was obtained, which confirmed the sorbent dosing is not the only factor to
fluctuate the pH of the solution.

Figure 4. Determination of pH point of zero charges (pHPzC) for (a) VPum and (b) VSco.

2.2. Effect of Adsorbents Particle Size

The effect of the particles size on the breakthrough behavior of fluoride was inves-
tigated for both VSco and VPum with grain size classes of silt to medium sand (<0.075,
0.075–0.425, 0.425–2.00 mm), while maintaining the same initial fluoride concentration
(10 mg/L), bed depth (10cm), initial flow rate (1.25 mL/min), as well as solution pH (2.00)
(Figure 5a (VPum), b (VSco)). As seen from Figure 5a (VPum) and b (VSco), on reducing
the particle size from medium (0.425–2.00 mm) to silt (<0.075 mm) the breakthrough and
exhaustion time noticeably increased for VSco, while the breakthrough and exhaustion time
was high for VPum at a fine particle size (0.075–0.425 mm). The resulting breakthrough
and removal of fluoride parameters are tabulated in Table 2. As can also be seen from
Table 2, the amount of total adsorbed fluoride (qtot) and the uptake of fluoride was high at
silt (<0.075 mm) and fine (0.075–0425 mm) particle size for VSco and VPum, respectively.
The smaller particle sizes provide large surface areas and/or sorption sites are more read-
ily available. The results showed that the reduction of particle size of an adsorbent is a
significant controlling factor in the fluoride–VSco system (at a particle size of <0.075 mm
the fluoride uptake was high). A similar effect was observed for VPum (at a particle size of
0.075–0.425 mm the fluoride sorption capacity was high). However, the effect of particle
size on the adsorption capacity is more pronounced for VSco than VPum. That means the
pore spaces are more readily available in VPum as compared to VSco, showing that the
pore space of VPum is a continuum (skeletal structure) while the pore space of VSco is
dominated by dead-end pores. This infers VPum loses its internal porosity at the smallest
particle size (<0.075 mm) since the continuum pore space (skeletal structure) is damaged
when compared to the fine particle size (0.075–0425 mm) and resulting in smaller internal
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pore surface areas; consequently, the removal capacity of the adsorbent decreased. On the
other hand, the pore space is not readily available in VSco (i.e., the internal pore space of
VSco is dominated by dead-end pores). VSco at the smallest particle size (<0.075 mm) is,
therefore, expected to have a large surface area, which leads to higher removal capacity
compared to the fine particle size (0.075–0425 mm). A similar observation was reported
for both adsorbents based on a batch adsorption experiment [28], and a similar remark
was also drawn for pumice in the previous study [38]. Moreover, the BET specific surface
area (SBET) of the adsorbents was determined. As expected, VPum (3.50 m2/g) has a
larger surface area than VSco (2.49 m2/g). Thus, all experiments other than the effect of
particle sizes were conducted at a particle size of <0.075 mm for VSco and 0.075–0.425 mm
for VPum.

Figure 5. Effect of particle sizes on the breakthrough behavior of fluoride in (a) VPum and (b) VSco at (pH 2.00; influent
fluoride concentration 10 mg/L (CO: 10 mg/L); flow rate 1.25 mL/min (QO: 1.25 mL/min; bed depth 10 cm).

Table 2. Fixed-bed column parameters obtained for fluoride adsorption onto VPum and VSco.

VPum. H
(cm)

CO
(mg/L)

QO
(mL/min) pH Particles size

(Psize) (mm)
tb

(min)
te

(min)
Vb

(mL) Ve (mL) MTZ
(cm)

EBCT
(min)

qtot
(mg)

qe
(mg/kg)

10 10 1.25 2.00 <0.075 816 1623 1019.64 2033.41 4.99 412 20.28 59.6
10 10 1.25 2.00 0.075–0.425 1206 2339 1507.50 2923.70 4.84 412 29.24 109.9
10 10 1.25 2.00 0.425–2.00 235 1013 293.23 1265.89 7.68 412 12.67 67.9
10 10 1.25 4.00 0.075–0.425 278 500 347.50 625 4.44 412 6.25 23.51
10 10 1.25 6.00 0.075–0.425 135 315 168.75 393.75 5.71 412 3.94 14.81
10 10 2.50 2.00 0.075–0.425 215 634 538.47 1585.16 6.60 206 7.93 29.8
10 10 3.75 2.00 0.075–0.425 75 359 282.69 1346.42 7.90 137 4.49 16.89

VSco H
(cm)

CO
(mg/L)

QO
(mL/min) pH Particles size

(Psize) (mm)
tb

(min)
te

(min)
Vb

(mL) Ve (mL) MTZ
(cm)

EBCT
(min)

qtot
(mg)

qe
(mg/kg)

10 10 1.25 2.00 <0.075 415 1286 518.03 1607.60 6.77 412 16.08 22
10 10 1.25 2.00 0.075–0.425 199 760 248.99 849.80 7.38 412 9.50 12.4
10 10 1.25 2.00 0.425–2.00 231 591 288.17 739.12 6.10 412 7.39 10.9
10 10 1.25 4.00 <0.075 296 487 370 608.75 3.92 412 6.09 8.2
10 10 1.25 6.00 <0.075 227 393 283.75 491.25 4.22 412 4.91 6.7
10 10 2.50 2.00 <0.075 185 445 462.95 1113.19 5.84 206 5.57 7.5
10 10 3.75 2.00 <0.075 69 249 256.82 931.87 7.24 137 3.10 4.2

tb = breakthrough time, te = exhaustion time, Vb = total effluent volume at breakthrough time, Ve = total effluent volume at exhaustion time
MTZ = Mass Transfer Zone, EBCT = Empty Bed Contact Time, qtotal = total amount of fluoride adsorbed from the column, qe = equilibrium
fluoride uptake per kg of adsorbent.
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2.3. Effect of Influent pH

The influent solution’s pH can noticeably affect the anions sorption on the adsorbents
by changing the degree of ionization, the ion speciation, and the adsorbent’s surface charge.
Therefore, the effect of solution pH on adsorption of fluoride using VPum and VSco was
investigated at different pH (2.00, 4.00, and 6.00) by a separate set of fixed-bed adsorption
columns. The breakthrough curves obtained for both adsorbents are shown in Figure 6a,b
for a fixed inlet flow rate of 1.25 mL/min, influent fluoride concentration of 10 mg/L,
column bed depth of 10 cm, and a particle size of <0.075 mm for VSco and 0.075–0.425 mm
for VPum.

Figure 6. Effect of pH on the breakthrough behavior of fluoride in (a) VPum: 0.075–0.425 mm and (b) VSco: <0.075 mm (CO:
10 mg/L; QO: 1.25 mL/min; bed depth 10 cm).

As can generally be observed from Figure 6a, b, the adsorption capacity of the adsor-
bents noticeably increased with decreasing pH. As can also be seen from Table 2 (VPum
and VSco), the total amount of fluoride adsorbed (qtot) was high for VPum (29.24 mg) and
16.08 mg for VSco at lower pH of 2, and the breakthrough time decreased from 1206 to
135 min for VPum and 415 to 227 min for VSco with an increase in pH from 2 to 6. The
volume of water treated at the breakthrough time was higher at pH of 2.00 (1507.5 mL for
VPum and 518.03 mL for VSco) than 4.00 (347.5 mL for VPum and 370 mL for VSco) and
6.00 (168.75 mL for VPum and 283.75 mL for VSco). This concludes the occurrence of the
breakthrough time was longer, the amount of fluoride adsorbed, and treated water volume
was high for a pH of 2.00. As pH varies, surface charge also varies; the sorption of charged
species is affected. Therefore, the performance of adsorbents for better adsorption at low
pH may be the result of the presence of a large number of H+ ions at low pH values, and
hence neutralize the negatively charged adsorbent surface [48], consequently dropping the
interference of the adsorption of fluoride. In addition, this reality can be elucidated based
on the pH value at the point of zero charges of the adsorbents (pHPZC = 6.85 (VPum) and
6.98 (VSco)).

Moreover, the decrease in the adsorption of fluoride at pH 4.00 and 6.00 could also be
due to the decrease in the number of H+ or electrostatic repulsion of fluoride by negatively
charged adsorbent surface [47,49].

Hence, the sorption of fluoride ions is due to an electrostatic phenomenon and surface
complexation that perform independently or together for the adsorption of fluoride ions
on the adsorbents. The removal mechanism at pH < pHPZC is presumably due to columbic
attraction of fluoride by positive surface charges (Equation (2)) and/or ligand exchange
reactions of fluoride with surface hydroxyl groups (Equation (3)).

MOH+
2 + F− ↔ MOH+

2 −−− F− (2)
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MOH+
2 + F− ↔ MF + H2O (3)

where, M represents Fe, Al, Si, Ca, Mg, etc.
In this study, an increment in the final pH (pH ∼7.20) was observed after the comple-

tion of the adsorption experiment, which is consistent with the columbic or ligand exchange
type adsorption mechanism shown in Equations (2) and (3) [47]. This can be further ex-
plained by the capacity of the adsorbents to maintain a neutral pH after adsorption [6,50].
The capacity to maintain neutral effluent solution pH could be from the amphoteric nature
of oxides in both adsorbents (Al2O3, Fe2O3, TiO2, etc.) when compared with the effect of
basic metallic oxides (Table S1). This type of observations were reported for the removal of
pollutant in a previous study [6]. Furthermore, the elemental compositions of exchangeable
cations also play a critical role in fluoride uptake during defluoridation [51]. There might
be a slight increase in electro conductivities of the final solutions, which might not influence
the adsorption process [52]. However, additional testing of the effluent solution for various
compounds may be required to draw definite conclusions.

It is noted that the effect of pH on the adsorption capacity may be due to the shared
impact of pH on the nature of the adsorbent surface, the existence of the adsorbed pollutant
(fluoride ion), and the added acid and base to the working solution to adjust its pH. In this
study, the optimum and effective removal of fluoride takes place at a pH of 2.00; hence, all
experiments other than the effect of pH were conducted at a pH of 2.00 for both adsorbents.

2.4. Effect of Flow Rate

The effect of flow rate on the adsorption of fluoride using VPum and VSco was
examined at the flow rates of 1.25, 2.50, and 3.75 mL/min whereas the bed depth (10 cm),
influent solution pH (2.00), initial fluoride concentration (10 mg/L), and adsorbents particle
size (<0.075 mm (Vsco) and 0.075–0.425 mm (VPum)) were held constant. As indicated in
Figure 7a (VPum) and b (VSco), the breakthrough curves become steeper and shifted to the
origin with an increasing flow rate while the breakthrough time decreased. The use of a
high flow rate decreases the contact time of fluoride in the solution with the adsorbents,
thereby allowing earlier breakthroughs to occur. Additionally, increasing the flow rate
from 1.25 to 3.75 mL/min decreased the volume of water treated from 1507.5 to 282.69 mL
and 518.03 to 256.03 mL for VPum and VSco, respectively (Table 2).

Figure 7. Effect of influent flow rate on the breakthrough behavior of fluoride in (a) VPum: 0.075–0.425 mm and (b) VSco:
<0.075 mm (pH 2; CO: 10 mg/L; bed depth 10 cm).

This was further supported by Mass Transfer Zone (MTZ) (Table 2) which increased
with increasing flow rate. The total fluoride adsorbed (qtot) increased from 4.49 mg to
29.24 mg for VPum and from 3.10 mg to 16.08 mg for VSco (Table 2) as the flow rate decrease
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from 3.75 to 1.25 mL/min. This results in the increase of the adsorption performance of
the column from 17 to 110 mg/kg and 4.2 to 22 mg/kg for VPum and VSco, respectively
(Table 2). The increase in sorption efficiency at a low flow rate shows that the adsorbates
have sufficient time to penetrate and diffuse deeply into the pores of the adsorbents; hence,
intraparticle mass transfer controls the sorption process. This was also verified by MTZ
(Table 2) or unused bed, which decreased with decreasing flow rate. In general, at the lower
flow rate, the contact time between the adsorbent and the fluoride was higher, resulting
in an increased breakthrough time and treated water volume for the continuous column
adsorption system. A similar type of observation was reported by various authors for
fixed-bed column systems [53–55]. In this study, the optimum and effective removal of
fluoride takes place at a flow rate of 1.25 mL/min; so, all experiments other than the effect
of flow rate were performed at a flow rate of 1.25 mL/min.

2.5. Application of the Thomas Model

The values of the Thomas model parameters, KT and qo for both adsorbents shown
in Table 3 for different experimental parameters were found from the non-linear opti-
mization techniques according to Equation (18). The non-linear plots of the experimental
(designated as exp.) and simulated (designated as cal.) breakthrough curves based on the
Thomas model for VPum (a) and VSco (b) at different particle sizes (Figure S1), influent pH
(Figure S2), and influent volumetric flow rate (Figure S3) were provided in Supplementary
Materials. The results of KT, qo, and correlation coefficient (R2) are shown in Table 3 for
VPum and VSco. From the results, it can be seen that the values of R2 range from 0.897 to
0.993 for VPum and 0.901 to 0.973 for VSco.

Table 3. Thomas model parameters for fluoride adsorption onto VPum and VSco.

VPum H (cm) Co (mg/L) Q
(mL/min) pH Psize (mm) KT (L/min.mg)

(×104)
q0(cal.)

(mg/kg)
qe(exp.)

(mg/kg) R2

10 10 1.25 2.00 <0.075 2.199 48.6 59.6 0.950
10 10 1.25 2.00 0.075–0.425 1.440 109.9 109.9 0.993
10 10 1.25 2.00 0.425–2.00 1.840 57.9 67.9 0.897
10 10 1.25 4.00 0.075–0.425 8.289 17.83 23.51 0.977
10 10 1.25 6.00 0.075–0.425 12.099 13.08 14.81 0.995
10 10 2.50 2.00 0.075–0.425 3.565 55.81 29.8 0.953
10 10 3.75 2.00 0.075–0.425 5 45.82 16.9 0.962

VSco H (cm) Co (mg/L) Q
(mL/min) pH Psize (mm) KT (L/min.mg)

(×104)
q0(cal.)

(mg/kg)
qe(exp.)

(mg/kg) R2

10 10 1.25 2.00 <0.075 1.23 19 22 0.901
10 10 1.25 2.00 0.075–0.425 2.213 13.4 12.4 0.931
10 10 1.25 2.00 0.425–2.00 3.310 10.1 10.9 0.956
10 10 1.25 4.00 <0.075 10.140 7.06 8.2 0.973
10 10 1.25 6.00 <0.075 15.520 5.42 6.7 0.965
10 10 2.50 2.00 <0.075 5.263 13.3 7.5 0.929
10 10 3.75 2.00 <0.075 7.220 11.2 4.2 0.944

The high values of R2 indicate there were no significant disparities between the
experimental data points and calculated data by the Thomas model for all particle sizes,
influent solution pH, and influent volumetric flow rate. The observed differences between
the experimental data and calculated data from the Thomas model may be due to the
characteristic attribute weakness in the model. The Thomas model does not consider
the external (film) and intra-particle diffusions in the adsorption system and, therefore,
proposes adsorbate–adsorbent surface reactions to control the adsorption rate, hence the
breakthrough. However, nearly all adsorption operations are typically not limited to surface
reaction kinetics, but are also controlled by external and/or intra-particle diffusion [56,57].
Thus, the perceived disparities in this study indicate external and/or intra-particle mass
transfer may be the rate-controlling steps in fluoride adsorption in a fixed-bed column
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onto the adsorbents. Similar observations were drawn with the kinetic study of fluoride
under fixed-bed conditions onto modified pumice [57]. As shown in Table 3, the value of
the Thomas rate constant (KT) increased as the influent flow rate increased but the value of
the maximum solid-phase concentration (qo) decreased. A related type of investigation on
Thomas constants for different systems was reported by various authors [58,59].

2.6. Application of the Adams–Bohart Model

The parameter values of the Adams–Bohart model, KAB and NO, as depicted in Table 4
for Vpum and Vsco were similarly determined by non-linear regression analysis according
to Equation (19).

Table 4. Adams–Bohart model parameters for fluoride adsorption onto VPum and VSco.

VPum H (cm) Co (mg/L) Q
(mL/min) pH Psize

(mm)
KAB (L/min.mg)

(×104)
N0

(mg/L) R2

10 10 1.25 2.00 <0.075 2.187 35.55 0.950
10 10 1.25 2.00 0.075–0.425 1.439 56.85 0.993
10 10 1.25 2.00 0.425–2.00 1.741 20.77 0.911
10 10 1.25 4.00 0.075–0.425 8. 289 9.22 0.995
10 10 1.25 6.00 0.075–0.425 12. 099 6.76 0.953
10 10 2.50 2.00 0.075–0.425 3.565 29.68 0. 962
10 10 3.75 2.00 0.075–0.425 5.000 22.74 0.995

VSco H(cm) Co (mg/L) Q
(mL/min) pH Psize

(mm)
KAB (L/min.mg)

(×104)
No

(mg/L) R2

10 10 1.25 2.00 <0.075 1.233 27.27 0.886
10 10 1.25 2.00 0.075–0.425 2.213 17.68 0.886
10 10 1.25 2.00 0.425–2.00 3.310 13.41 0.956
10 10 1.25 4.00 < 0.075 10.145 10.13 0.969
10 10 1.25 6.00 < 0.075 15.518 7.77 0.980
10 10 2.50 2.00 < 0.075 5.263 19.72 0.929
10 10 3.75 2.00 < 0.075 7.221 15.36 0.944

From the results presented in Table 4, it can be realized that the values of R2 range
from 0.911 to 0.993 for Vpum and 0.886 to 0.969 for VSco. The high values of R2 designate
the applicability of the Adams–Bohart model for describing the entire sorption mechanisms
of fluoride onto VPum and VSco under a continuous fixed-bed flow process.

In a similar fashion with the Thomas model, the comparison of the non-linear plots of
the experimental and calculated breakthrough curve, based on the Adams–Bohart model,
are generally in good agreement for VPum (a) and VSco (b) at different particle sizes
(Figure S4), influent solution pH (Figure S5), and influent flow rate (Figure S6) respectively.
Only minor disparities were noticed at lower pH (2.00) and particle sizes of 0.075–0.425 mm
and <0.075 mm for VPum and VSco, respectively. As seen in Table 4, the values of the
kinetic constants were affected by the influent flow rate and increased with increasing
flow rate. This presented that external mass transfer in the entire fluoride adsorption
mechanisms in the fixed-bed column dominates the overall system kinetics [57,60]. In
general, both the Adams–Bohart and the Thomas models could predict very well the entire
region of the breakthrough curves for the fluoride-VSco and fluoride-VPum systems. In
addition, both the Adams–Bohart model (Equation (19)) and the Thomas model (Equation
(18)) are mathematically the same and, therefore, gave similar fit quality.

2.7. Comparison of Different Adsorbents on Fluoride Removal

A comparison has been made between volcanic rocks (VPum and VSco) used in this
study and previously reported adsorbents for fluoride removal in a fixed-bed column
system. The results for some adsorbents are presented in Table 5.
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Table 5. Comparison of other adsorbents with VPum and VSco.

Adsorbents Surface Area
(m2g−1)

Bed Depth
(cm)

Fluoride in
(mgL−1)

Adsorption
Capacity

(mg F- g−1)

Adsorption
Capacity per Surface

Area (mg.m−2)
References

Cement paste NA* 20 15 0.149 - [61]
aluminum modified

iron oxide NA 10.5 4 0.139 - [62]

Acid-treated
bentonite (GHB) 24.5 28 2.85 0.169 0.0069 [63]

MnO2-coated
Tamarind Fruit Shell NA 6 2 0.883 - [64]

kanuma mud 144.01 10 20 1.560 0.0108 [49]
Activated alumina

(Grade OA-25) 250 10 5 0.74 0.0029 [65]

VPum 3.5 10 10 0.110 0.0314 This study
VSco 2.49 10 10 0.022 0.0088 This study

NA*: Not available.

As can be seen from these results in Table 5, the natural VPum used is comparable to
cement paste and aluminum modified iron oxide in terms of defluoridation capacity. Values
of adsorption capacity per unit surface area are, however, higher for VPum than those of
acid-treated bentonite (GHB), kanuma mud, and activated alumina; and higher for VSco
than acid-treated bentonite (GHB) and activated alumina (Grade OA-25) (Table 5). Both
adsorbents are available in abundance in all parts of the world and are readily available in
approximately 1/3 of Ethiopia’s total area and are, hence, favored adsorption materials
because of very low supply costs. The adsorbents used are primarily part of the natural
environment. However, to improve the specific surface area and hence the defluoridation
capacity, surface modification of the natural volcanic rocks may be appropriate.

3. Materials and Methods
3.1. Materials

In this study, rock samples were collected from volcanic cones (VPum: 8◦10′ N 39◦50′ E;
VSco: 8◦33′ N 39◦16′ E) of the Main Rift Valley area of Oromia Regional State, East Showa
Zone, Ethiopia, around 50–100 km East of Addis Ababa. The rocks are readily available in
approximately 1/3 of the country’s total area and are, thus, a preferred adsorption material
because of very low supply costs [29,48,66].

3.2. Preparations of Adsorbents

The rock samples (VPum and VSco) were washed repeatedly with deionized water
until all water-soluble compounds and dust were removed, and thereafter dried at 55 ◦C for
48 h [30,67]. After cooling samples down to room temperature, they were crushed with a
mortar and sieved using different mesh sizes: silt (<0.075 mm), fine sand (0.075–0.425 mm),
and medium sand (0.425–2.00 mm) [28,68]. All prepared samples were packed in air-tight
plastic bags and stored at a cool and dry place for further use.

3.3. Preparations of Adsorbate

All glassware and bottles were thoroughly washed and rinsed with deionized water
before usage. Chemicals used were analytical grade reagents and a fluoride stock solution
(1000 mg/L) was prepared freshly by dissolving 2.21 g of anhydrous NaF (Merck KGaA,
Darmstadt, Germany) in 1000 mL of deionized water. The synthetic fluoride solution of
desired concentrations was made by diluting the stock solution. 0.1 M of NaOH and/or
0.1 M HCl solutions were used to adjust the pH values of the fluoride solution utilized in
the column experimental experiments.
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3.4. Adsorbent Characterizations
3.4.1. Crystalline Structures

The crystalline structures of the adsorbents were analyzed by an X-ray diffractometer
(XRD-7000, Drawell, Shanghai, China) with Cu Kα as a radiation source (1.54056 Å)
generated at 30 kV and 25 mA instrument. The diffractograms were gained with a step
width of 2θ and a scan rate of 0.04◦/min.

3.4.2. Chemical Composition

The elemental composition of the adsorbents was analyzed using inductively coupled
plasma-optical emission spectroscopy (ICP-OES). X-ray fluorescence (XRF) spectroscopy
was used to obtain information on the oxide contents of the adsorbents.

3.4.3. Fourier Transform Infrared (FTIR) Analysis

FTIR spectra of the samples were run on KBr pellets. The spectra were recorded over
a range of 5000 to 400 cm−1 at a resolution of 0.1 cm−1 in a PerkinElmer spectrometer
(UNSW Sydney, Australia) using a lithium tantalite (LiTaO3) detector.

3.4.4. Scanning Electron Microscope (SEM) Analysis

A scanning electron microscope (SEM) (JCM-6000plus, Version 0.2, Peabody, MA,
USA), operated at 15 kV, was used to determine the morphologies of VPum and VSco. The
characteristics of the adsorbents were compared.

3.4.5. Determination of pH and Point of Zero Charges (pHPZC)

The pH of the adsorbents was determined using a pH meter in a 1:10 adsorbent/water
ratio as per the standard method [6]. The pH at the point of zero charges (pHPZC) of the
adsorbents was examined based on the standard method. For this effect, 250 mL of 0.01 M
NaCl solution as an electrolyte was positioned in a vessel, thermostated at 298 K, and
N2 was bubbled through the solution to stabilize the pH by preventing the dissolving of
CO2 from the air. In 6 Erlenmeyer flasks, 25 mL of the electrolyte was introduced and the
pH was adjusted to the required value (2.00, 4.00, 6.00, 8.00, 10.00, and 12.00) by adding
0.1 M NaOH or 0.1 M HCl. The same procedure and method were performed for blank
electrolyte solution (0.01 M NaCl). In each beaker, 0.25 g of the rock samples were added
and shaken for 48 h. The suspension was subsequently filtrated and the final pH was
determined. The point of zero charges (pHPZC) was found at the intersection point by
plotting the initial pH versus the final pH.

3.4.6. BET Analysis

The specific surface area (SBET) of the adsorbents was measured using a nitrogen gas
adsorption-desorption technique at 77k using surface analyzer equipment (Micrometrics/
Gemini-2372). The samples were degassed at 300 ◦C under vacuum for at least 6 h before
analysis. The Brunauer-Emmett-Teller (BET) equation was used to obtain a specific surface
area (SBET). The SBET values of the two adsorbents (VPum and VSco) are compared.

3.5. Column Adsorption Experimental Set-Up and Procedures

Continuous fixed-bed column adsorption studies were carried out to assess the dy-
namic behavior of fluoride removal by using VPum and VSco. Continuous flow adsorption
experiments were conducted in a small-scale cylindrical column of 8.1 cm internal diameter
and 10 cm height with an empty bed volume of 515 cm3. The column was filled with
a weighted amount of adsorbent of different particle sizes (silt: <0.075 mm, fine sand:
0.075–0.425 mm, and medium sand: 0.425–2.00 mm). The same particle size was used if
controlling parameters such as pH and flow rate were tested. The bed was conditioned
with deionized water (pH: 7.00–7.30) for 12 h (overnight) to ensure a closely packed adsor-
bent and to avoid the potential occurrence of voids, channeling, or cracking, which can
significantly affect the performance of the column.
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A synthetic fluoride solution with a concentration of 10 mg/L was pumped to a
packed bed column in up-flow mode to avoid channeling caused by gravity. The influent
volumetric flow rate varied between experiments but was held constant in a given experi-
ment using an adjustable peristaltic pump (MS-REGLO, Labortechnik-Analytic, Zürich,
Switzerland). The experiments were conducted at room temperature (25 ± 2 ◦C). The
effluent column sample was collected using an automatic fraction collector (RFI, MA-RON
GmbH, Germany). The constant flow rate was verified by collecting and quantifying the
effluent solution at regular time intervals. The column operation was stopped when the
concentrations of the fluoride in the effluent exceeded 90% of its initial concentrations.
Ion chromatography (930 Compact IC Flex, Metrohm, Switzerland) was used to quantify
fluoride concentrations. The instrument uses 3.2 mmol/L Na2CO3/1.0 mmol/L NaHCO3
as eluent, Metrosep A Supp 5–150/4.0 column, and a standard conductivity detector to
measure the conductivity of the effluent solutions. The fluoride concentration was mea-
sured in the calibration range of 0.2–200 mg/L, contains inline dilution, inline dialysis,
eluent degasser, CO2 suppressor, and chemical suppressor. Suppression in IC maximizes
the detection sensitivity of fluoride ions while reducing the background conductivity of
the eluent.

The maximum tolerable breakthrough concentration (Cb) was 1.5 mg/L (15% of
the influent initial concentration of 10 mg/L), which is recommended by WHO [4] as a
maximum acceptable level for drinking water.

The effect of experimental parameters such as particles size (silt: <0.075 mm, fine sand:
0.075–0.425 mm, and medium sand: 0.075–0.425 mm), influent solution pH (2.00, 4.00, and
6.00), and influent volumetric flow rate (1.25, 2.50, and 3.75 mL/min) on breakthrough
behavior and amount of fluoride removed were examined.

3.6. Modeling and Analysis of Fixed-Bed Column Data

A fixed-bed column adsorption performance is well described through the break-
through curve concept [53]. The time of solute breakthrough and the shape of the break-
through curve are important indicators for the operational adsorption processes; the
breakthrough curve is directly linked to the viability and economics of the adsorption
process [54,69]. The breakthrough patterns and according parameters are dependent on the
operating conditions of the fixed-bed column such as adsorbent particle size, influent flow
rate, and pH of the influent solution. Nevertheless, the pH value may not influence the
breakthrough curve in a situation such as when using strongly basic anion exchangers. The
primary and significant attribute is the sorbent selectivity to the pollutant, as well as the
dynamic exchange capacity and full dynamic capacity of the column [70]. To investigate the
performance of the column and to scale-up, the determination of breakthrough parameters
is crucial. The breakthrough curves expressed in terms of the ratio of effluent to influent
adsorbate concentration (Ct/Co) as a function of time or effluent volume for a given height
of the bed reflects the absorbed fluoride from the solution. Time equivalent to stoichiomet-
ric capacity (exhaustion time) and time equivalent to usable capacity (breakthrough time)
is shown in Equations (4) and (5), respectively [54,59].

te =
∫ t=ttotal

t=0

(
1− Ct

Co

)
dt (4)

tb =
∫ tb

t=0

(
1− Cb

Co

)
dt (5)

where te is exhaustion time (min), tb is the breakthrough time (min) at which Ct = Cb
(mg/L) (for the present system, Cb = 1.5 mg/L).

The total value of fluoride adsorbed (qtotal: mg) from the column for a given feed
concentration and the flow rate was obtained from the area (A) under the breakthrough



Molecules 2021, 26, 977 15 of 20

curve by integrating the adsorbed fluoride concentration Cad (Cad = Co−Ct) (mgL−1)
versus t (min) and can be obtained from Equation (6) [55,71].

qtotal =
QA
1000

=
Q

1000

∫ t=ttotal

t=0
Caddt (6)

where ttotal, and Q are the total flow time until saturation of the bed (min), and volumetric
flow rate (mL/min), respectively.

Equilibrium fluoride uptake (qe: mg kg−1) (maximum capacity of the column) in the
column is calculated by Equation (7) as the total amount of fluoride adsorbed (qtotal) per
kilogram of dry adsorbent mass (m) at the end of the total flow time [71].

qeq =

qtotal
m

(7)

The effluent volume (Ve) and treated effluent volume or breakthrough volume (Vb) of
solution can be found from Equations (8) and (9), respectively.

Ve = Qte (8)

Vb = Qtb (9)

where, Ve is the total effluent volume at exhaustion time (mL), Vb, total effluent volume
at the breakthrough time (mL), Q is the volumetric flow rate (mL/min), te and tb are
exhaustion and breakthrough time (min), respectively.

The Mass Transfer Zone (MTZ) or unused bed length (HUNB) can be obtained from
Equation (10) [54,59].

MTZ = HT

(
te − tb

te

)
(10)

where HT is total bed height (cm), te (min) is exhaustion time, and tb is breakthrough
time (min).

The Empty Bed Contact Time (EBCT), which measures the critical depth and the
contact time between the solid phase adsorbent and the liquid phase, can be obtained from
Equation (11).

EBCT =
VB

Q
(11)

where VB is the volume of a fixed bed (mL) and Q is the flow rate (mL/min).
The bulk density (ρb: gm.cm−3), which measures the adsorbent compaction status,

and the particle density (ρp: gm.cm−3) of the adsorbent can be obtained from Equations (12)
and (13), respectively [72].

ρb =
mads

Vt
(12)

ρp =
mads

Vt − Vv
(13)

where mads is the dry mass of adsorbent (mg), and Vt is the bulk volume (cm3) which
includes the volume of adsorbent (VB:cm3) and the pore space between the adsorbent
particles or void volume (Vv:cm3).

The void volume (Vv:cm3) of the adsorbent can be found from Equation (14) [72].

Vv =
WSat −Wdry

ρw
(14)

where Wdry is the weight of dry adsorbent (g), Wsat is the weight of saturated adsorbent
(g), and ρw is the density of water (g cm−3).
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The total porosity of the adsorbent (εb) can be obtained from Equation (15) [72].

εb = 1− ρb
ρp

(15)

The filter (superficial) velocity (Vf:cm min−1) and effective (interstitial) velocity
(VI:cm min−1) can be found from Equations (16) and (17), respectively [72].

Vf =
Q
A

(16)

VI =
Q

A× εb
(17)

where A is the cross-sectional area of the fixed-bed (cm2) and Q is the flow rate (cm3min−1).

3.7. Fixed–Bed Column Breakthrough Curve Modeling

The successive operation of a small scale column towards industrial applications can
be well elucidated with the help of some models. Various models have been reported for
predicting the breakthrough performance in fixed-bed adsorption [57,73]. In this study, the
two most important and widely used mathematical models, the Thomas model and Adams–
Bohart model, have been applied to the column experimental data for describing the
dynamic behavior of fluoride adsorption using VPum and VSco in a fixed-bed column filter.

3.7.1. Thomas Model

The Thomas model [74] is one of the most extensively employed kinetic models to
predict fixed-bed column performance. In addition to the prediction of the breakthrough
curve for the effluent, the model can be used to determine the maximum uptake of adsor-
bate and adsorption rate constant [74]. The non-linear form of the Thomas model can be
described as follows Equation (18), [75].

Ct

Co
=

1

1 + exp
[
KTqo

m
Q −KTCot

] (18)

where Co (mg/L) is the initial solute concentration, Ct (mg/L) is the solute concentration at
the time, t, Q (L/min) is the volumetric flow rate, qo (mg/kg) is the maximum solid-phase
concentration of solute (maximum column adsorption capacity), KT is the Thomas rate
constant (L/min mg), and m (kg) is the packed dry mass of the adsorbent in a fixed-bed.

3.7.2. Adams–Bohart Model

The Adams–Bohart model [76] was developed for the analysis of the dynamics of
fixed-bed based on the assumption that the adsorption rate is proportional to both the
residual adsorbent and adsorbate concentration. The nonlinear form of the Adams–Bohart
model (Equation (19)) [77], was used for the prediction of breakthrough curves and model
parameters.

Ct

Co
=

1

1 + exp
[
KABNo

Z
v −KABCot

] (19)

Where KAB (L/mg min) is the kinetic constant, v (mL/min) is the linear flow rate, Z
(cm) is a column bed depth, and NO (mg/L) is the saturation concentration (adsorption
capacity of the adsorbent per unit volume of the bed), and time t (min) ranges from the
start to fluoride breakthrough point. The linear flow rate was determined by Equation (20).

v =
Q
A

(20)
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where Q (cm3/min) is the volumetric flow rate, and A (cm2) is the cross-sectional area of
the bed [60,62,78].

4. Conclusions

In this study, the removal of fluoride from aqueous solutions was examined in a con-
tinuous fixed-bed adsorption column system using VPum and VSco. The characterizations
investigations were performed using XRD, SEM, FTIR, BET, XRF, and ICP-OES equipment
to reveal the mechanisms of adsorption and the suitability of the adsorbents for fluoride
removal. The pHPZC is 6.98 for VSco and 6.85 for VPum. The effects of process parameters
such as adsorbent particle size, influent pH, and influent volumetric flow-rate on the
performance of the adsorption process in a column were evaluated. The maximum removal
capacity of 110 mg/kg for VPum and 22 mg/kg for VSco were achieved at a particle size
of 0.075–0.425 mm and <0.075 mm, respectively, at lower solution pH (2.00) and flow rate
(1.25 mL/min). The increase in adsorbent particle size, solution pH, and flow rate decreases
the breakthrough and saturation time of the column bed and, consequently, lowers the
amount of fluoride removal by VSco. The breakthrough and exhaustion time on VPum
was high at a particle size of 0.075–0.425 mm, at lower solution pH and flow rate similar
to that of VSco. Thus, in order to attain optimum performance, suitable experimental
parameters are significant for the operation of the adsorption column. The Thomas and
Adams–Bohart models were applied to the experimental data to estimate the breakthrough
curves and to determine fixed-bed column kinetic parameters. Both the Adam–Bohart and
the Thomas models could predict very well the entire region of the breakthrough curves for
the fluoride-VSco and fluoride-VPum system. The results show that VPum and VSco could
be used in a fixed-bed adsorption column for the removal of excess fluoride from water.
The supply cost of the two adsorbents is very low; nevertheless, an overall cost analysis of
the purification system is very important as it has implications for the feasibility (technical
and economic) of the adsorption method. Additional testing of the adsorbents including
representative samples test for possible compositional, mineralogical, and textural changes
in time due to weathering, leaching test, competitive ions effects, and regeneration options
is required to confirm that the defluoridation of groundwater employing volcanic rocks is
a safe and sustainable method.

Supplementary Materials: Table S1: Elemental composition and oxides content of VPum and VSco,
Figure S1: Experimental (exp.) and simulated (cal.; Thomas model) breakthrough curves of fluoride
at different particle sizes for (a) VPum and (b) VSco (pH 2.00; CO: 10 mg/L; QO: 1.25 mL/min;
bed depth 10 cm), Figure S2: Experimental and simulated (Thomas model) breakthrough curves
of fluoride at different pH for (a) VPum: 0.075–0.425 mm (b) VSco: <0.075 mm (CO: 10 mg/L;
QO: 1.25 mL/min; bed depth 10 cm), Figure S3: Experimental and simulated (Thomas model)
breakthrough curves of fluoride at different influent flow rate for (a) VPum: 0.075–0.425 mm and
(b) VSco: <0.075 mm (pH 2.00; CO: 10 mg/L; bed depth 10 cm), Figure S4: Experimental (exp.) and
simulated (cal.; Adams–Bohart model) breakthrough curves of fluoride at different particle sizes
for (a) VPum and (b) VSco (pH 2.00; CO: 10 mg/L; QO: 1.25 mL/min; bed depth 10 cm), Figure S5:
Experimental and simulated (Adams–Bohart model) breakthrough curves of fluoride at different
pH for (a) VPum: 0.075–0.425 mm and (b) VSco: <0.075 mm (CO: 10 mg/L; QO: 1.25 mL/min; bed
depth 10 cm), Figure S6: Experimental and simulated (Adams–Bohart model) breakthrough curves
of fluoride at different flow rate for (a) VPum: 0.075–0.425 mm and (b) VSco: <0.075 mm (pH 2.00;
CO: 10 mg/L; bed depth 10 cm).
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