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A B S T R A C T   

In alleviating challenges associated to long-lasting consolidation of clay, highly permeable materials such as sand 
and crushed aggregate are used as drain. Despite the fact that granular vertical drains are effective in shortening 
the prolonged consolidation period of clay, limited information exist regarding applicability of scoria gravel as 
vertical drain that no concisely documented information is observed in literatures. This study hence aimed at 
evaluating suitability of scoria gravel as vertical drain in perpetuating consolidation process of soft clay under 
road embankment. Finite element-based simulation was used to model the drains. To incorporate the effect of 
gradual load increment on consolidation rate, staged construction approach was employed. Various dimensions 
of scoria vertical drain (SVD) have been considered to investigate the effect of dimension parameters. Besides, 
comparison has been made between performances of SVD and crushed aggregate drains (CAD) in impacting the 
consolidation process. The numerical analysis result revealed that provision of group of SVD considerably 
accelerated consolidation rate. With increase in drain diameter, the consolidation rate goes increasing whereas it 
is inversely related to increase in drain spacing. For SVD installed at spacing of 2 m, diameter of 0.4 m and length 
of 8 m any arbitrary settlement magnitude is achieved 25 days earlier than the case without drain. No consid
erable difference was witnessed in performance of the square and triangular installation patterns though the 
consolidation rate remains slightly faster in the case of triangular installation. In speeding up consolidation rate, 
SVD was observed to perform slightly better than the CAD.   

1. Introduction 

Clay soil is typically known for its poor workability that embankment 
loads results in bearing failure and excessive deformation after con
struction [3]. Conventionally, the engineering properties of clay soil are 
modified via application of chemical and mechanical stabilization ap
proaches [78,79]. Clayey ground underlying road embankments 
commonly experiences a long-lasting deformation that takes consider
able time duration for consolidation process to be fully accomplished 
[1]. Upon placement of external loading, the excess pore pressure begins 
rising which is typical characteristics of clayey foundations [2]. In many 
practical cases, removal of massive clay deposits down to larger depths 
is technically and economically not feasible. In the move to overcoming 
this challenge, employment of vertical drains to purposely speed up 
consolidation rate is one of the widely applied remedial measures [4]. 
The principle of vertical drains is primarily employed to provide addi
tional vertically installed drainage faces in the form of cylindrical or 
square holes filled with highly permeable materials [5]. Vertical drains 

made of crushed aggregate, sand, and prefabricated vertical drain are 
commonly provided without removing the massive volume of unsuitable 
clayey soil [6–8]. Vertical drain improves permeability of low perme
able soils through reducing the drainage path [9]. Negesa AB [4] stated 
that vertical drains are fundamentally installed in group to accelerate 
soil consolidation process by shortening the drainage path and acti
vating radial drainage, thereby increasing the shear strength of the soil 
while reducing its post construction settlement [10–12]. In addition to 
its drainage role, vertical drain also plays reinforcing role that is perti
nent in improving the overall load bearing capacity of soft grounds [13, 
80–82]. With rapid consolidation process, soft soils gain shear strength 
rapidly which allows faster pace of construction works. This signifi
cantly increases the long-term stability of the structures built on clayey 
ground as the potential consolidation settlements are accomplished 
mostly before or during the construction phase [14,60–69]. The water 
flow into vertical drain is affected by the degree of saturation of soil 
surrounding the drain [75–77]. 

Scoria is a highly porous pyroclastic material made of solidification 
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of volcanic lava [15,16]. Ethiopian rift valley is known for large 
coverage of volcanic materials like pumice, scoria and cinder [17]. 
Melese DT and Newill D et al. [18,19] reported that scoria is one of the 
materials abundantly found in volcanic prone areas of Ethiopian rift. 
From application point of view, scoria gravel is widely used for 
improvement of weak subgrade materials and as replacement material 
for production of light weight concrete. Use of scoria as additive when 
blended with other materials is recently becoming common practice 
especially in improving highway sub grade. Conventionally, it does not 
meet requirements of pavement materials without blending with other 
materials [20]. Gomes F and October S [21] in the study on blended 
properties of cinder blended subgrades for construction of roads 
concluded that volcanic scoria considerably performs well in reducing 
plasticity and improving gradation and density of weak subgrades. 
Because of its light weight, scoria is used in production of construction 
blocks as well [15]. It is also similarly, used as cement additive in con
struction of reinforced concrete structures to improve engineering 
properties of concrete [22–24]. Hossain KMA and Hearn GJ et al. [25, 
26] reported that blending of scoria as additive material in concrete 
works proved effective in improving strength, durability and heat 
insulation properties of the concrete. Saltan M and Ozen FS [27] in the 
experimental study on usability of scoria as sub base material reported 
appropriateness of scoria as a partial replacement. Finding of the study 
revealed that scoria is effective in improving Californian bearing ratio 
and lessening the plastic index of pavement sub base. 

Many studies have documented the wide application of scoria ma
terial as road subgrade and sub base and as additive material in concrete 
work. Almost all of the works concentrated on its applicability in 
improving weak pavement courses and concrete properties. None of the 
previously conducted works reported on suitability and applicability of 
scoria as vertical drain. In this study hence the potential use of volcanic 
scoria as vertical drain is explored. The study specifically focuses on the 
consolidation and deformation attributes of soft clay subgrade under 
impact of highway embankment and vertically installed scoria drains. 
Besides, the performance and suitability of scoria material as vertical 
drain is compared with that of crushed aggregate columns. Its effec
tiveness in shortening consolidation duration of soft clay is also evalu
ated for both square and triangular vertical drain installation patterns. 
Lastly, the influence of drain dimension parameters is explored via finite 
element based numerical modeling. 

2. Methods and materials 

2.1. Material characterization 

For the numerical analysis conducted in the current study, five 
different materials namely soft clay, volcanic scoria, crushed aggregate, 
sand blanket and natural gravel fill were considered. The soft clay is 
considered as foundation of the road reinforced with vertical drains 
installed at various spacing. The massive clay soil is reinforced with a 
group of vertically installed scoria gravel and crushed aggregate drains. 
The clay soil is of massive thickness under lied by relatively hard strata 

situated at large depth. Samples of clay soil for determination of physical 
properties were collected from outskirt of Jimma city, Ethiopia. As 
observed from the conducted laboratory tests, permeability of the clay 
soil is considerably insignificant which a typical characteristic of prob
lematic expansive soil is. The materials considered in the study have the 
properties summarized in Table 1 and Fig. 1. 

Scoria gravel was used as a cylindrical vertical drain for the prior 
intention of shortening radial drainage path in a clay soil. The consid
ered scoria material was sampled from outskirt of Adama city, Ethiopia 
which is one of the areas well known for its predominant coverage of 
volcanic slag. Scoria by its nature is highly permeable cinoscoidal ma
terial [23,28,59]. Granular vertical drains apparently play dual 
(drainage and reinforcement) role. In addition to perpetuating consoli
dation rate, vertical drains are also known for their reinforcing role as 
stabilizing material. Therefore, through provision of vertical drains load 
bearing capacity, permeability and deformation characteristics of soft 
clay are improved [20,27]. Accordingly, scoria drains having various 
diameter and lengths are vertically installed at different spacing. 
Permeability of scoria in horizontal direction is usually several times 
larger than that in vertical direction. Hence, the rate of consolidation 
becomes considerably faster compared to conventional soil system [15, 
21]. 

Crushed basalt aggregate is the second alternative used as vertical 
drain. Apart from its drainage role by reducing radial path of drainage, 
crushed aggregate is also well known for its reinforcing role as stone 
column [70,71]. Crushed aggregate drains are commonly provided in 
group and can be floating or end bearing type [72]. The applicability 
and suitability of materials as vertical drain is basically affected by 
permeability of the material [73,74]. 

Sand blanket is placed on top of the clay mass right after installation 

Table 1 
Physical properties of the materials required.  

Properties/Parameters Unit Clay soil Scoria Crushed aggregate Sand Embankment 

Moisture Content (wc) % 48.75 – – – 21 
Liquid limit (LL) % 88 – – – 44 
Plasticity index (PI) % 53 – – – 16 
Soil classification (USCS)  CH GP-GM GP-GM – GP-GM 
Activity (A)  0.64 – – – – 
Specific gravity (Gs)  2.72 2.50 2.78 2.63 2.64 
Bulk unit weight (γ) kN/m3 16.11 13.78 22.62 18.60 19.76 
Unconfined Compressive Strength (UCS) kPa 39.52 – – – – 
Secant Young’s modulus (E50) MPa – 41.5 62.17 38 35.5 
Compression index (Cc)  0.42 – – – –  

Fig. 1. Particle size distribution of the soft clay, scoria, embankment fill and 
sand envelope. 
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of the vertical drains to allow dissipation of water in the lateral direc
tion. With gradual increment in magnitude of embankment load, the 
developed excess pore pressure gets relief through the vertical drains. 
The horizontal sand drain receives the upward dissipating water via the 
scoria drain so that the water can possibly flow to road side ditch. The 
sand layer hence facilitates the lateral dissipation of water without 
infiltration of water into the fill material. The sand drain lets excess 
water to flow to road side ditch without disturbing moisture content of 
the fill material [4]. Coarse sand is commonly preferred over fine sand to 
be used as horizontal drain because of development of relatively large 
voids between solid grains [8]. The voids are hence suitable room for 
fast flow of excess water which significantly contributes to rapid 
consolidation of the clay soil. Even though the primarily purpose of 
having sand drain for its drainage role, it is also beneficial in making the 
loading area leveled and uniform [6]. 

A natural granular selected material was used as road embankment 
material. For the purpose of material characterization, a sample for 
embankment fill was collected from the quarry site situated in the vi
cinity of Jimma city named Baddaa Bunaa. The embankment material is 
directly placed on top of the sand envelope. The material is hence the top 
layer used in the numerical simulation. In this specific study, the fill 
material will serve as both preloading and integral part of the pavement 
structure. Even though it plays a preloading role, the material is not 
removed at commencement of the actual construction work. Hence, it is 
a permanent part of the road embankment structure. 

Mineral composition of the scoria material was determined using the 
analytical method of elemental analysis. Accordingly, X-ray diffraction 
(XRD) method was used to chemically characterize the scoria gravel 
material and the chemical composition of the material is illustrated 
Fig. 2. X-ray diffraction is basically employed to measure the average 
spacing and orientation between layers and crystals [29]. Besides, the 
size, shape, crystal structure and internal stress of small crystalline re
gion is investigated [30]. The conducted experimental result revealed 
that chemical composition of the scoria material is dominated by SiO2 
accounting 53.35% and followed by Al2O3 which is 16.34% by weight. 
Contrarily, MnO, K2O and TiO2 are some of the scarce chemicals from 
which scoria was composed. 

2.2. Numerical modeling 

2.2.1. Definition of the problem of interest 
In the current study, soft clay reinforced with a group of vertically 

installed scoria gravel and crushed aggregate drains was numerically 
modeled using the principle of finite element method. As scoria and 
crushed aggregate are highly permeable material, the materials were 

primarily used to presumably speed up consolidation process of the clay 
mass under embankment load. A group of drains were installed up to 
certain depth of the clay mass. The horizontal sand blanket is placed 
immediately on top of the clay mass to allow effective lateral dissipation 
of pore water. Consolidation analysis was carried out by using the three- 
dimensional version of Plaxis software. Under the imposed embankment 
load, the performance of vertical drains in perpetuating consolidation 
rate was investigated. The numerical model is also intended to simulate 
the deformation response and consolidation attributes of the soft clay. 

2.2.2. Geometry of the model 
Various geometrical shapes are employed to numerically model 

geotechnical problems. These commonly used geometries include unit 
cell, axis symmetric, plane strain, Equivalent homogeneous soil and 
three-dimensional models. Selection of the proper and suitable geome
try for simulation of vertical drains depends on and affected by the 
specific purpose for which the geometry is modeled. However, many 
literatures reported that the 3D model is the most effective geometry for 
simulation of deformation and stress characteristics of soil material 
[13]. The 3D model can assume two forms namely full three dimensional 
and three-dimensional rows or slice of columns. Due to the vast extent of 
the road embankment, modeling of the entire area of the embankment 
was found to be impossible without significant technical gain. Thus, a 
portion of the road embankment only was modeled. In the current study 
hence the three-dimensional slice of rows was used to simulate a group 
of scoria gravel and crushed aggregate drains made of six rows and 
fifteen columns. The problem to be modeled is made of a number of 
material layers having their own thickness. The clay mass treated with 
installation of granular drains is 27 m thick and the considered model 
has an overall area of 51.4 m × 39 m. The drains were introduced to a 
certain depth of the massive clay deposit (44.45% of the clay thickness). 
In practical scenes vertical drains can be installed either in square or 
triangular pattern. The group performance of granular drains is usually 
influenced by the spacing and arrangement of the drains [9]. In this 
specific model, a drain spacing of 1.5 m was considered. Of the 51.4 m 
by 39 m area of the model, drains were introduced to 9 m by 21.4 m area 
(9.6% of the total area of the model). Similarly, the drain diameter of 
0.4 m was used. A 0.75 m thick sand blanket is provided on top of the 
soft clay as a horizontal drainage media. In addition to drainage role, the 
sand layer allows an even and leveled loading surface to develop. Fig. 3 
(b) shows cross-section of the road embankment and material layers 
considered for the numerical model. The embankment is 7 m wide which 
is anonymous to the typically practiced width of unpaved road in 
Ethiopian context. Slope of the 3.6 m thick test embankment (made up of 
granular fill) has an inclination of 1:2 (Vertical: Horizontal). The 3D 
view of the model geometry is depicted in Fig. 3 (a). 

2.2.3. Numerical analysis process 
The numerical model conducted is analogous to a 7 m wide typical 

unpaved road cross section whose foundation material is completely 
clay soil. The performance of the foundation material hence is a function 
of different factors as its response to external loading does not remain 
consistent over time. Especially, deformation characteristics of the clay 
mass are time dependent feature. In order to simulate the deformation 
and consolidation related attributes of the foundation material under 
embankment load, consolidation analysis was carried out. The consoli
dation process of clayey soils is influenced by many factors such as 
loading duration, drainage condition and rate of loading [13,31]. The 
overall processes of the numerical simulation pass through two major 
phases of analysis. The first one is by which the initial in situ properties 
of the weak soil are simulated. During this phase of simulation, only the 
massive clay is modeled in a complete absence of any external loading 
and drains. Secondly, the clay mass is modeled after being treated with a 
group of vertically installed granular drains (scoria gravel and crushed 
aggregate). After installation of the drains, the sand blanket and the 
granular embankment material are permanently placed in a sequential Fig. 2. Chemical composition of volcanic scoria via XRD.  

A. Beyene et al.                                                                                                                                                                                                                                 



Results in Engineering 17 (2023) 100975

4

manner for certain time duration. In this stage, the massive compressible 
soil is directly subjected to embankment load. 

The Hardening Soil (HS) constitutive model which considers shear 
and compression hardening of soft soil was employed to simulate the 
properties and deformation characteristics of the soft clay, the vertical 
drains, sand blanket and embankment fill. The material parameters used 
in the numerical model is summarized in Table 2. Mohr- Coulomb is one 
of the oldest widely used soil model to numerically simulate soil be
haviors exhibiting linear interfaces and non-sophisticated boundary 
conditions [32]. Hardening Soil is an advanced and versatile material 
model that takes into account the key drawbacks existing within the 
Mohr- Coulomb model [33,34]. HS is a powerful soil model which 
overcomes some limitations associated with the Soft Soil (SS) model 
especially with regard to over consolidated soils [33,35]. 

2.2.4. Boundary conditions, mesh density and material interfaces 
Numerical boundary conditions such as load, displacement, stress 

and hydraulic boundaries are applied to numerical models so that the 
numerical problems can be solved. These boundary conditions are 
believed to numerically represent the actually existing boundary con
ditions in real physical problems. In some sophisticated domains 

however, it is not easy to suitably simulate the physical boundary con
ditions via finite element based numerical models [36]. In the current 
study, displacement and drainage boundary conditions were considered. 
The displacement boundary condition was applied to both the vertical 
and bottom sides of the geometry. Accordingly, the model was fixed 
both laterally and vertically from the bottom whereas all the vertical 
sides are subjected to lateral fixity. With regard to drainage, a flow 
boundary was specified to take into account the presence of ground 
water table at a depth of 1 m from the surface. Summary of the flow 
boundary is presented in Table 3. Any stress boundary condition has not 
been considered in the numerical analysis. There is no quantified 
magnitude of external stress which the soft clay supports except 
self-weight of the sand and embankment layers. The pressure imposed 
by the fill material and sand drain is not specified as stress boundary 
since both materials are integral part of the model geometry. 

One of the commonly faced challenges in determining dimension of 
numerical models is proximity of the fixed boundaries to the main area 
of interest in the model. Proximity of the fixed boundaries to the main 
area of interest (loaded area) influences accuracy of the calculation. The 
iteration and mesh density to be generated is also impacted which in 
turn affects the overall calculation result. In order to overcome the 

Fig. 3. a) 3D view of geometry of the model, b) Cross-section of the embankment and material layers.  

Table 2 
Input parameters used for the numerical model.  

Properties/Parameters Unit Clay soil Scoria Sand Crushed aggregate Embankment 

Initial void ratio (eo)  1.321 0.5 0.5 0.64 0.5 
Unit weight kN/m3 16.11 13.78 19.84 22.62 18.513 
Over-consolidation ratio (OCR)  1 – – – – 
Lateral earth pressure coefficient at rest (Ko)  1 0.211 0.168 0.223 0.156 
Natural moisture content (wc) % 48.75 – – – 21 
Stiffness modulus for unloading/reloading (Eur) MPa – 124.4 114 210.17 106.5 
Stiffness modulus for primary loading (E50) MPa – 41.5 38 68.31 35.5 
Oedometric modulus (Eoed) MPa – 41.5 114 93.34 106.5 
Permeability in X direction (Kx) m/s 2*10− 4 3.64*10− 1 2.41*10− 1 3.32*10− 1 3.499 
Permeability in Y direction (Ky) m/s 2*10− 4 3.64*10− 1 2.41*10− 1 3.32*10− 1 3.499 
Vertical Permeability (Kv) m/s 2*10− 4 3.1*10− 1 2.41*10− 1 3*10− 1 3.499 
Compression index (Cc)  0.42 – – – – 
Modified Compression Index (λ*)  0.184 – – – – 
Modified Swelling Index (κ*)  0.037 – – – – 
Stress level dependency of stiffness (M)  0.5 0.5 0.5 0.5 0.5 
Strength reduction factor (Rint) 

Rint  
1 1 1 1 1 

Cohesion (c) kPa 24.27 0.00 1 0.00 3 
Friction angle (Ø) o 6.95 40.71 37 41.60 33 
Dilation Angle (Ψ) o 0.00 6.785 6.16 8.76 0.00  
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boundary effect hence considerable clearance should be left between the 
exterior boundaries of the model and area of interest [1,37]. As stated by 
Grizi A et al. [38], the distance from center of the loaded area to the 
exterior boundaries ranging from four to ten times the length (width) of 
the loaded area is preferably used to significantly lower the boundary 
effect. In the current study hence the model dimension was selected 
taking into account the influence of proximity. Accordingly, for the 7 m 
road width, the exterior edges of the model in the bottom and trans
versal directions were conservatively positioned at distances of 31.35 m 
and 25.7 m from the top finished level of the embankment and center of 
the road section respectively. The influence of boundary position can be 
estimated through comparing the mean effective stresses and normal
ized vertical displacements at various depths and lateral distances from 
center point of the loaded area. The dimension of the domain along the 
longitudinal direction is extremely large as the road section is of kilo
meters long. Therefore, dimension of the model along this direction was 
considered to be 39 m. Since the total width of the model in the longi
tudinal direction is subjected to embankment loading, estimating the 
reasonable dimension by using effective stresses and normalized vertical 
displacements is not suitably possible. However, the possible distance of 
the bottom and lateral (in transversal direction) boundaries from center 
of the loaded area were selected based on the recommendation of Grizi A 
et al. [38]. 

In finite element analysis, accuracy of calculation is the function of 
mesh density and size [39]. Fine meshes apparently leads to 

development of more elements leading to prolonged iteration time 
thereby more accurate results [40]. Considering large number of meshes 
with smaller size increases the processing time required to generate the 
calculation results [40]. Applying meshes having smaller sizes alleviates 
the problem of divergence in results of the analysis. As mesh size 
decrease, the attributes such as maximum deformation converges to
wards the calculated value [41]. However, the analysis run time rises 
exponentially which in turn provides diminishing marginal returns in 
terms of calculation accuracy. Calculation accuracy hence depends on 
degree of refinement of the mesh [42]. For accuracy of calculation not 
only size of meshes matter but also shape of the meshes has its own 
impact. For the 3D model, there are four mesh elements commonly used 
which include tetrahedral, bricks, prisms and pyramids whereas trian
gular and quadrilateral elements are used in the two-dimensional model 
[41]. For discretization purpose, prism element was considered in the 
current study that the generated meshes assume prism geometry (Fig. 4 
(a), Fig. 4 (b)). 

2.2.5. Pattern and methods of drain installation 
Vertical drains are arranged either in square or triangular pattern. In 

some cases, however drains can be installed by mixing the two patterns. 
The performance of drains in bringing about expected settlement within 
required time period is affected by the installation pattern and spacing 
between the drains [9,51,53,43, 44]. In the current study, installation of 
the scoria gravel drains in square grid pattern was considered (Fig. 5 (a), 

Table 3 
Summary of boundary conditions for groundwater flow.  

Material layers Boundary limits Xmin Xmax Ymin Ymax Zmin Zmax 

Sand X = 0–61.4 m 
Y = 0–9 m 
Z = − 1 m–0 m 

Open Open Closed Closed Open Open 

Soft Clay X = 0–61.4 m 
Y = 0–9 m 
Z = − 52 m to -1m 

Open Open Closed Closed Open Open 

Embankment (1st fill) X = 20–41.4 m 
Y = 0–9 m 
Z = 0–1.2 m 

Open Open Closed Closed Open Open 

Embankment (2nd fill) X = 22.4–39 m 
Y = 0–9 m 
Z = 1.2 m–2.4 m 

Open Open Closed Closed Open Open 

Embankment (3rd fill) X = 24.8–36.6 m 
Y = 0–9 m 
Z = 2.4 m–3.6 m 

Open Open Closed Closed Open Open  

Fig. 4. Meshing and boundary conditions applied to the model.  
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Fig. 5. a) Arrangement of drains in square pattern, b) Installation of drains in clay soil.  

Fig. 6. Phases of the staged construction in presence of SVD; (a) Initial phase (no fill), (b) The 1st stage fill, (c) The 2nd stage fill, (d) The 3rd stage fill.  
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Fig. 5 (b)). Besides, the comparison was made between performance of 
the two installation patterns (square and triangular grid) in speeding up 
consolidation rate. The installed drains have a length (L) of 12 m, 
diameter (D) of 0.4 m and situated at center to center spacing (S) of 1.5 
m. The efficiency of a group of drains is a result of collective contribu
tion of many factors such as drain diameter, length and spacing, smear 
zone, discharge capacity of drain material, hydraulic conductivity and 
installation method [13,45,46]. Installation of vertical drains causes 

remolding of the sub soil especially in the zone close to the drain face. As 
a result, the zone of less permeability and increased compressibility will 
develop which significantly influences the effectiveness of drains. 
Remolding apparently retards the consolidation process [9]. In the 
current study however the effect of smearing was not considered. In the 
practical installation of vertical granular drains, there are three tech
niques commonly employed. These techniques are driven or vibratory 
closed - end mandrel, jetted and hollow stem continuous - flight auger 

Fig. 7. Mesh geometry indicating PWP and settlement variation in presence of SVD: a) The 1st round fill, b) The 2nd round fill, c) The 3rd round fill.  

A. Beyene et al.                                                                                                                                                                                                                                 



Results in Engineering 17 (2023) 100975

8

[6]. 

2.2.6. The consolidation process and staged construction 
Consolidation analysis introduces the dimension of time in the cal

culations that the process is dependent on time-based loading. In order 
to accurately perform a consolidation analysis, a reasonable time step 
has to be selected. Therefore, the analysis of clay consolidation should 
allow for a time-stepping procedure that takes into account time based 
incremental loading [47]. In specific context, the main intention of 
introducing drains to clay soil is to accomplish the consolidation process 
within predefined time duration, to attain a required minimum excess 
pore pressure or to attain the required degree of consolidation [48,49]. 
In relation to this, the analysis conducted in the current study targeted at 
completing the consolidation process within a certain time duration 
which can possibly be achieved via introduction of staged construction 
approach. In staged construction approach, step wise incremental 
loading is considered to purposely allow clay soil completely under goes 
consolidation within a certain fixed time frame. Every activity executed 
as part of the embankment construction was systematically simulated. 
The overall construction process of the test embankment encompasses 
six models including three cycles of granular material fill. First, the 
compressible clay mass was modeled in order to generate the in-situ 
deformation, pore pressure and stress conditions. Secondly, the clay 
mass after getting treated with a group of drains was modeled in absence 
of any fill material. The third model considered simulation of the 
consolidation attributes after placement of the horizontal sand drain. 
After the third model, three models were done for the three rounds of fill 
placement (1.2 m thick each). The construction phases of the model are 
presented in Fig. 6. Following the first fill placement, consolidation 
process is expected to begin [9]. The deformation magnitudes and pore 
water pressure changes with gradual increase in fill volume (Fig. 7). 
After completion of the first round of fill, consolidation period of days 
was implemented to let the excess pore pressure dissipate. Similarly, 
after completion of each fill, another consolidation period was intro
duced from which the final consolidation settlements could be deter
mined (Table 4). 

3. Results and discussions 

3.1. Effect of SVD on settlement and pore water pressure (PWP) 

Rate of pore water dissipation for the soft clay with and without 
installation of group of vertical scoria drains was simulated (Fig. 8 (a)). 
The magnitude of excess pore water pressure in the absence of vertical 
drains is higher than the case in which SVD is considered. During the 
whole duration of consolidation process, no significant reduction in 
excess PWP was observed as the artier of water dissipation from the clay 
mass is very less even after the considered consolidation time. This is 
because low soil permeability makes it difficult for pore water in the soil 
to freely dissipate, resulting in a lengthy final consolidation process. In 
contrast, the dissipation rate of pore water is relatively faster for the case 
in which the clay is reinforced with SVD. This is due to presence of SVD 
in the clay mass which can shorten the exit distance of soil pore water [4, 
50–52]. Like other granualr materials (sand and crushed aggregate) with 
high permeability, introduction of scoria gravel as vertical drain 

performs well in facilitating and speeding up consolidation rate of 
clayey soil. The three peaks observed in the graph indicates that there is 
fluctuation in magnitude of PWP with placement of fill material in three 
rounds. The numerical analysis revealed that it takes a maximum of 244 
and 376 days the excess PWP to be released under the 3.6 m thick 
embankment with and without SVD respectively. 

The significance of drain installation is determined not only by how 
rapidly the consolidation process proceeds, but also the amount by 
which the soft soil settle out. The comparison made between the 
embankment built with and without SVD revealed that the magnitude of 
vertical deformation in the presence of SVD is greater in magnitude than 
the case in which SVD is not provided (Fig. 8 (b)). Likewise, the rein
forced clay mass settles more rapidly than the untreated one as the 
provision of drains perpetuates consolidation process. The soft clay 
undergoes a consolidation settlement of 0.272 m in the presence of SVD 
within 244 days whereas a vertical deformation of 0.261 m is observed 
within 376 days of consolidation period in the absence of SVD. As re
ported by Warner J and Zaika Y [54,55], introduction of vertical drains 
to soft clays reduces the overall duration of consolidation process by 
more than four months. The magnitude of consolidation settlement in 
the presence of crushed aggregate is relatively lower than the case in 
which scoria gravel drains are installed. The gradation and the perme
ability of the two materials is almost similar even though crushed basalt 
aggregate is obviously denser than scoria. The numerical analysis 
revealed that the performance of scoria gravel drains in perpetuating the 
consolidation rate of clay soil is slightly better than the crushed aggre
gate drains (CAD). 

3.2. Parametric study 

3.2.1. Influence of drain diameter 
In order to investigate the effect of variation in drain diameter (D) on 

PWP and settlement of the clay mass, three diameters 0.4 m, 0.6 m and 
0.8 m were considered. The PWP and consolidation settlement were 
simulated for the three diameters. Obviously, placement of fill material 
causes generation of PWP due to the load from embankment. The 
magnitude of PWP increases with decrease in diameter of the vertical 
drains that the excess PWP is significantly higher for drain diameter of 
0.4 m than 0.6 m and 0.8 m (Fig. 9 (a)). The reason is that vertical drains 
with larger diameter enable pore water to freely dissipate at relatively 
rapid rate which in turn contributes to reduction in the excess pore water 
pressure [50]. The rate of excess PWP dissipation increased together 
with the diameter of the scoria vertical drain. Maximum of 122, 78, and 
51 days are required for excess pore water to be dissipated at mid depth 
of the soft clay when using drain diameters of 0.4, 0.6 and 0.8 m 
respectively. It was also observed that very small variation in drain 
diameter considerably results in noticeable change in PWP. 

The variation in vertical deformation with change in drain diameter 
(both SVD and CAD) is presented in Fig. 9 (b). The variation in drain 
diameter influences not only rate of deformation but also the magnitude 
of settlement [13]. When drains with smaller diameter are used, it takes 
long time to achieve a certain magnitude of settlement. In relation to 
this, increasing the size of the SVD from 0.4 m to 0.6 m and 0.8 m leads 
to growing rate of settlement by 36% and 58% respectively. The nu
merical analysis also reveals that the clay soil to undergo vertical 
deformation of 0.25 m, it takes 40, 65 and 95 consolidation days when 
using SVD diameters of 0.8 m, 0.6 m and 0.4 m respectively. Increasing 
diameter of the vertical drain provides suitable space for pore water to 
freely dissipate which in turn increases the rate of vertical deformation 
[7]. Result of the current study with regard to effect of drain diameter 
has good agreement with work of Hammad MS [13] in which a direct 
relationship between drain diameter and deformation rate was reported. 
Like in the case of scoria gravel drains, the consolidation rate drops with 
decrease in diameter of the CAD. Even though similar increment pattern 
in consolidation settlement is observed between SVD reinforced and 
CAD reinforced clay, the rate of consolidation is yet higher for scoria 

Table 4 
The overall construction and consolidation process of the clay.  

Loading/Construction 
phases 

Duration 
(day) 

Duration until the next construction 
stage (day) 

Installation of drains 5 2 
Placement of sand 

envelope 
5 10 

1st fill placement 10 50 
2nd fill placement 10 80 
3rd fill placement 10 250  
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Fig. 8. a) Effect of SVD on PWP under embankment fill (for D = 0.4 m, S = 2.5 m, L = 8 m), b) Effect of SVD and CAD on consolidation settlement (for D = 0.4 m, S =
2.5 m, L = 8 m). 

Fig. 9. a) Effect of SVD diameter on pore water pressure (for S = 1.5 m, L = 15 m), b) Effect of SVD diameter on consolidation settlement (for S = 1.5 m, L = 15 m).  

Fig. 10. a) Effect of SVD spacing on pore water pressure (for D = 0.6 m, L = 15 m), b) Effect of SVD and CAD spacing on consolidation settlement (for D = 0.6 m, L =
15 m). 
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drains (Fig. 9 (b)). 

3.2.2. Effect of drain spacing 
Not only drain diameter but also inter drain spacing (S) matters in 

consolidation process of soft clay. For comparative purpose, three 
spacing (1.5 m, 2 m and 2.5 m) of drains were considered for 0.6 m 
diameter of drains. Fig. 10 (a) shows, distribution of the excess PWP at a 
mid-depth of the soft clay during the three stages of fill placement. 
Placement of SVD close to each other reduces the developed excess PWP 
via perpetuating the water dissipation rate from the clay soil. The 
analysis indicates that when SVD is placed at spacing of 1.5 m, 2 m, and 
2.5 m it takes 73, 90 and 112 days to complete dissipation of excess pore 
water from the soft clay. It is evident that the excess PWP can sufficiently 
be reduced as long as a shorter drainage path is provided [4,12]. 
Installation of vertical drains at narrower spacing shortens drainage 
path and PWP generated due to embankment loading is lowered [14,44, 
56]. 

Similarly, the effect of SVD spacing on settlement was examined 
using the stated three spacing. With increased SVD spacing, the rate of 
consolidation rate reduces resulting in prolonged dissipation of pore 
water (Fig. 10 (b)). From the figure it is observed that the rate of 
consolidation appears to increase with the reduction in SVD spacing. 
When the SVD spacing is reduced from 2.5 m to 2 m, the consolidation 
time drops by 10.8%, and when it is reduced further from 2 m to 1.5 m, it 
decreases by 21.21%. The soft clay undergoes settlement of 0.27 m in 70 
days when a group of SVD is installed at spacing of 1.5 m. However, it 
waits at least for additional duration of one month if the drains are 
provided at spacing of 2.5 m. Hence, it can be inferred that using spacing 
of 1.5 m over 2.5 m saves 30 days of consolidation time. Similarly, Ali AB 
[57] reported that as the diameter of vertical drains is reduced, the rate 
of consolidation is lowered. Comparison of the settlement rate has been 
made between the SVD and CAD for 2 m and 2.5 m spacing of the drains. 
The scoria reinforced clay undergoes 0.266 m consolidation settlement 
within 80 days of consolidation duration whereas it takes about ten 
extra days for the CAD reinforced clay to undergo the same magnitude of 
settlement for the drain spacing of 2 m. Similarly, the clay mass in the 
presence of SVD experiences vertical deformation of 0.275 m on the 
100th consolidation day. In the presence of CAD however the clay 
should wait for about 118 days for drain spacing of 2.5 m. 

3.2.3. Influence of drain length 
In order to investigate the critical influence of SVD length (L) on PWP 

and settlement rate, three lengths of SVD were considered. Fig. 11 (a) 
depicts the change in PWP for SVD lengths of 8 m, 10 m and 15 m. Unlike 

diameter and spacing, change in SVD length has a moderate effect on the 
dissipation rate of pore water pressure. The numerical simulation 
demonstrates that an increase in SVD length leads to slight increase in 
dissipation rate of excess pore water. Accordingly, a decrease in SVD 
length from 15 m to 12 m increases consolidation period by 17.95%. 
When the length is further reduced to 8 m, 46.16% increment in 
consolidation time was observed. From the study, it can be deduced that 
higher magnitude of PWP develops when vertical drains of short length 
are installed in soft clay. In contrast, the PWP is minimized when the 
drains are installed relatively deeper in to the clay mass. 

By examining the impact of the drain length on both time rate of pore 
pressure and settlement, the effectiveness of the floating SVD and CAD 
was examined. As indicated in Fig. 11 (b), settlement rate is higher for 
higher lengths of SVD and CAD. This is due to the fact that higher is the 
length of drains, the faster rate of settlement will be. In relation to this, 
Hammad MS and Lou C et al. [13,47,58] pointed out that the time it 
takes for pore water to dissipate and the prolonged settlement decrease 
as length of vertical drains grows. 

3.3. Effect of SVD installation pattern on PWP and vertical deformation 

Numerical model was performed for both triangular and square 
installation patterns of SVD in order to compare the performance of 
installation patterns on consolidation process of the clay soil. Even 
though the boundary conditions, material properties and dimension 
parameters (spacing, diameter and length) remain the same, the 
arrangement in which the drains are installed differs. The analysis result 
reveals that the triangular pattern has marginally better influence on 
reduction of both the duration of consolidation and excess PWP than the 
square grid pattern. However, the difference in magnitude of the two 
parameters (PWP and consolidation rate) between the two installation 
patterns is of minimal effect as the two curves are very close to one 
another (Fig. 12 (a), Fig. 12 (b)). Finding of the study with regard to 
drain installation perfectly agrees with works of Hammad MS [13] in 
which it was concluded that no significant difference exists between the 
performance of square and triangular patterns. 

4. Conclusions 

The numerical analysis revealed that a group of SVD when installed 
into soft clay performs well in improving the consolidation process of the 
soil via shortening the drainage path. Based on the obtained findings, the 
following conclusions can be drawn. 

Fig. 11. a) Effect of SVD length on pore water pressure (for D = 0.6 m, S = 1.5 m), b) Effect of SVD and CAD length on consolidation settlement (for D = 0.6 m, S =
1.5 m). 
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• The effect of SVD dimension parameters on PWP and rate of settle
ment is more significant for drain diameter and spacing over the 
length. The consolidation process is sensitive to the variation in 
dimension of drain spacing and diameter whereas the effect of drain 
length is not as influential as spacing and diameter. With increase in 
diameter of drains, the pore water dissipation rate and rate of set
tlement go fast. Besides, the narrower spacing between drains, the 
faster its consolidation would be.  

• The length of SVD affects the dissipation of excess pore water and 
hence the settlement rate. Lowering of the d of SVD leads to a lower 
rate of dissipation of pore water pressure and rate of settlement. In 
contrast, the decrement rate in excess PWP and vertical deformation 
increases with increase in SVD length.  

• The installation pattern of drains has an impact on dissipation rate of 
excess pore water. However, no noticeable difference in the magni
tude of rate of settlement is observed between square and triangular 
drains arrangements. Hence, drain installation insignificantly in
fluences the consolidation process of clay.  

• For the considered consolidation duration, the performance of SVD 
in enhancing consolidation rate is slightly higher than that of CAD. 
Settlement pattern of the clay in the presence of SVD has good 
agreement with its consolidation settlement in the presence of CAD. 
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