Jimma University Open access Institutional Repository

Effects of different soil amendments on bacterial wilt caused by ralstonia solanacearum and on the yield of tomato

Show simple item record

dc.contributor.author G.B. Yadessa
dc.contributor.author A.H.C. van Bruggen
dc.contributor.author F.L. Ocho
dc.date.accessioned 2020-12-10T08:11:39Z
dc.date.available 2020-12-10T08:11:39Z
dc.date.issued 2010
dc.identifier.uri http://10.140.5.162//handle/123456789/2564
dc.description.abstract Ralstonia solanacearum race 3 biovar 2 (phylotype II) is the causal agent of bacterial wilt of tomato, the most destructive bacterial disease of this crop in Ethiopia for which no effective control measures are available. In this study, the effects of amending topsoil with three different levels (1, 5 and 10%) of cocopeat, farmyard manure (FYM) compost and green compost, and two levels of bacterial inoculations were tested on infection of tomato by R. solanacearum compared to non-inoculated treatments. Non-amended topsoil with and without R. solanacearum were included as control treatments. Survival of and infection by R. solanacearum and yield-associated agronomic responses were used for evaluation along with physico-chemical and biological characteristics of amended soils. Amendments resulted in changes in physico-chemical properties (such as electrical conductivity, organic matter content, total carbon, dissolved organic carbon, NH4 +, NO3 - ) and microbial activity of the amended soil and the effects were found to be higher at the higher rate of application. Effects on disease suppression and survival of the pathogen in the soil differed depending on amendment type and application rate. Higher disease severity was recorded in soil amended with 10% green compost compared to the control treatment. Complete suppression of R. solanacearum was observed in pots amended with 5 and 10% farm yard manure (FYM), 1% green compost and 10% cocopeat. Absence of disease at the highest rate of FYM was supported by a lower number of culturable R. solanacearum bacteria recovered from rhizosphere soil two months post-inoculation in soil amended with 10% FYM. Soil amended with 10% FYM gave higher root and above-ground dry weight. Moreover, FYM added to topsoil at 5 and 10% gave significantly higher aboveground fresh weight. This study indicated that amending topsoil with different types and rates of amendment can suppress bacterial wilt severity and pathogen survival in the soil. Amendments also enhanced tomato Corresponding author: G.B. Yadessa Fax: +251.471110934 E-mail: gberecha@yahoo.com yield, the higher rates of amendments being the most effective except green compost at 10% which gave a 27% lower yield compared with the higher rate of FYM. Among the amendments tested, FYM at 5 or 10% would be an interesting option to manage R. solanacearum in the major tomato-growing regions of Ethiopia. However, the mechanisms of disease suppression at higher rates of FYM need to be investigated en_US
dc.language.iso en en_US
dc.subject soil suppressiveness en_US
dc.subject compost en_US
dc.subject bacterial wilt of tomato en_US
dc.subject soil-borne disease en_US
dc.subject control en_US
dc.title Effects of different soil amendments on bacterial wilt caused by ralstonia solanacearum and on the yield of tomato en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IR


Browse

My Account