Abstract:
Nowadays, energy crisis and environment pollution are two big challenges that restrict
the development of society. Energy is a very important driving force to improve the standard of
living and develop a country. The most versatile material class used in the field of organic
photovoltaics is called π-conjugated polymers. Solar energy is a sustainable, environmentally
friendly, unlimited energy from the sun and renewable energy source. The morphology of the
active film is important for the efficiency of the solar cells. The most important branches in
materials science is called polymer blend which has gained considerable attention to meet
multifunctional need. Blends of two different polymers are likely to form a large phase separated
structure; this is an inherent characteristic of polymers with a long main chain. Phase diagrams
display specific information in terms of when the phase separation occurs and which phase separated structure can be formed and therefore can be a suitable guidance to the phase
separation of polymer blend. In this study, the phase diagrams of n-type low bandgap
P(NDI2OD-T2) solutions and blends were constructed. To this end, we employed the Flory Huggins lattice theory for qualitatively understanding the phase behavior of P(NDI2OD-T2)
solutions as a function of solvents (chlorobenzene, chloroform, and p-xylene). Herein, the
polymer-solvent interaction parameter was obtained from a water contact angle measurement,
leading to the solubility parameter. The phase behavior of these P(NDI2OD-T2) solutions
showed both liquid-liquid and liquid-solid phase transitions. However, depending on the solvent,
the relative position of the liquid-liquid phase equilibria and solid-liquid phase equilibria (i.e.,
two-phase co-existence curves) could be changed drastically, i.e., LLE > SLE, LLE ≈ SLE, and
SLE > LLE. Finally, we studied the phase behavior of the polymer-polymer mixture composed of
P(NDI2OD-T2) and r-reg P3HT, in which the melting transition curve was compared with the
theory of melting point depression combined with the FH model. The FH theory describes
excellently the melting temperature of the r-reg P3HT/P(NDI2OD-T2) mixture when the entropic
contribution to the polymer-polymer interaction parameter (ꭓ =116.8 K/T−0.185, dimensionless)
was properly accounted for indicating an increase of entropy by forming a new contact between
two different polymer segments. Understanding the phase behavior of the polymer solutions and
blends affecting morphologies plays an integral role towards developing polymer optoelectronic
devices. We report the phase behavior of amorphous/semicrystalline conjugated polymer blends
xvii
composed of low bandgap PCPDTBT and P(NDI2OD-T2). As usual in polymer blends, these two
polymers are immiscible because
0 and 0 m m
S H
, leading to
0 Gm
, in which
m
S ,H
m
, and
Gm
are the entropy, enthalpy, and Gibbs free energy of mixing, respectively.
Specifically, the FH interaction parameter for the PCPDTBT/P(NDI2OD-T2) blend was
estimated to be 1.26 at 298.15K, indicating that the blend was immiscible. When thermally
analyzed, the melting and crystallization point depression was observed with increasing
PCPDTBT amounts in the blends. In the same vein, the X-ray diffraction patterns showed that
the π-π interactions in P(NDI2OD-T2) lamellae were diminished if PCPDTBT was incorporated
in the blends. Finally, the correlation of the solid-liquid phase transition and structural
information for the blend system may provide insight for understanding other
amorphous/semicrystalline conjugated polymers used as active layers in all-polymer solar cells,
although the specific morphology of a film is largely affected by nonequilibrium kinetics. The
thesis is organized into six chapters. Chapter 1 gives a brief general introduction. Chapter 2
focuses on a literature review on the topic of the study. The third chapter focuses on the
experimental methods and materials adopted for the present work. The fourth chapter deals with
the phase diagrams of n-type low bandgap naphthalenediimide-bithiophene copolymer solutions
and blends. Chapter 5 focuses on the phase behavior of amorphous/semicrystalline conjugated
polymer blends for which PCPDTBT and P(NDI2OD-T2) was chosen as a model system. Last
chapter 6 includes the general discussion of the investigations, overall messages, strengths and
limitations, conclusions drawn from the works, and recommendations relates to the outlook for
future work. In each case, the goal is to understand the phase behavior of the polymer solutions
and blends affecting morphologies that plays an integral role in developing polymer
optoelectronic devices.